## SENECA

## USER MANUAL



## SENECA s.r.I.

Via Germania, 34 - 35127 - Z.I. CAMIN - PADOVA - ITALY
Via Svizzera, 17 - 35127 - Z.I. CAMIN - PADOVA - ITALY
Tel. +39.049.8705355-8705359 Fax. +39.049.8706287
Web site: www.seneca.it
Technical assistance: supporto@seneca.it (IT), support@seneca.it (Other)
Commercial reference: commerciale@seneca.it (IT), sales@seneca.it (Other)

This document is property of SENECA srl. Duplication and reproduction of its are forbidden (though partial), if not authorized. Contents of present documentation refers to products and technologies described in it. Though we strive for reach perfection continually, all technical data contained in this document may be modified or added due to technical and commercial needs; it's impossible eliminate mismatches and discordances completely. Contents of present documentation is anyhow subjected to periodical revision. If you have any questions don't hesitate to contact our structure or to write us to e-mail addresses as above mentioned.

## Index

Manual purpose ..... 5
Manual validity ..... 5
Z-PC Line standards ..... 6
Distributed automation and ModBUS ..... 7
RS232 and RS485 serial interfaces ..... 10
Message format. ..... 18
Error management in ModBUS protocol ..... 21
The Z-PC CANopen System ..... 22
Basics on CANOpen Networking ..... 22
Technical Specifications ..... 25
Connecting the Z-PC CANOpen Series to the Seneca bus ..... 27
Connection of Z-PC CANOpen Series to a generic bus ..... 32
Setting the dip-switches of Z-PC Stations ..... 35
Extending a CANopen bus with the ZC-107FO signal repeater ..... 37
How it works ..... 38
Quick start: CANopen with CODESYS 2.3 ..... 40
Easy-SETUP ..... 53
Appendix ..... 53
The module of Seneca Z-PC line ..... 54
Connections ..... 59
Decommissioning and disposal ..... 64
Seneca Z-PC Line module: Z-D-IN ..... 65
Seneca Z-PC Line module: Z-10-D-IN ..... 73
Seneca Z-PC Line module: Z-D-OUT ..... 82
Seneca Z-PC Line module: Z-10-D-OUT ..... 89
Seneca Z-PC Line module: Z-D-IO ..... 98
Seneca Z-PC Line module: ZC-24DI ..... 114
Seneca Z-PC Line module: ZC-24DO ..... 127
Seneca Z-PC Line module: ZC-16DI-8DO ..... 143
Seneca Z-PC Line module: Z-4AI ..... 157
Seneca Z-PC Line module: Z-8AI ..... 164
Seneca Z-PC Line module: Z-3AO ..... 172
Seneca Z-PC Line module: Z-4TC ..... 180
Seneca Z-PC Line module: Z-8TC ..... 186
Seneca Z-PC Line module: Z203 ..... 197
Seneca Z-PC Line module: Z-4RTD-2 ..... 204
Seneca Z-PC Line module: Z-SG ..... 213
Seneca Z-PC Line module: Z-DAQ-PID ..... 229
Seneca Z-PC Line module: S203T ..... 244
Seneca Z-PC Line module: S203TA ..... 259
Seneca Z-PC Line module: ZC-24DI (CANOpen) ..... 275
Seneca Z-PC Line module: ZC-24DO (CANOpen) ..... 292
Seneca Z-PC Line module: ZC-16DI-8DO (CANOpen) ..... 303
Seneca Z-PC Line module: ZC-3AO ..... 324
Seneca Z-PC Line module: ZC-4RTD ..... 338
Seneca Z-PC Line module: ZC-8AI ..... 359
Seneca Z-PC Line module: ZC-8TC ..... 384
Seneca Z-PC Line module: ZC-SG ..... 409

## Manual purpose

The purpose of this Manual is to provide the User with all information necessary to use the modules of the Seneca Z-PC Line.

This Manual contains the general characteristics and features to know and use the modules of Seneca Z-PC Line.

## Manual validity

This Manual contains informations concerning to Seneca Z-PC Line, in particular: Constructor data identification, electrical and communication connections, functioning, RS485 registers, CANOpen objects and features, decommissioning and disposal.

The modules of the Seneca Z-PC Line are shown in the following table.

| Z-PC Line <br> module | Description | Protocol |
| :--- | :--- | :--- |
| Z-D-IN | 5-CH Digital input module / RS485 | ModBUS |
| Z-10-D-IN | 10-CH Digital Input module / RS485 | ModBUS |
| Z-D-OUT | 5-CH Digital output module / RS485 | ModBUS |
| Z-10-D-OUT | 10-CH digital output module / RS485 | ModBUS |
| Z-D-IO | 8-CH, 6 digital inputs - 2 digital outputs control module | ModBUS |
| ZC-24DI | 24 CH digital input CANopen / ModBUS | ModBUS/CanOpen |
| ZC-24DO | 24 CH digital output CANopen / ModBUS | ModBUS/CanOpen |
| ZC-16DI-8DO | 16 CH digital input - 8 CH digital output CANopen / <br> ModBUS | ModBUS/CanOpen |
| Z-4AI | 4-CH analog input module / RS485 | ModBUS |
| Z-8AI | 8-CH analog input module / RS485 | ModBUS |
| Z-3AO | 3-CH analog output module / RS485 | ModBUS |
| Z-4TC | 4-CH thermocouple input module / RS485 | ModBUS |
| Z-8TC | 8-CH thermocouple input module / RS485 | ModBUS |
| Z203 | AC single phase network analyzer | ModBUS |
| Z-4RTD-2 | 4-CH RTD input module / RS485 | ModBUS |
| Z-SG | Strain gauge input module | ModBUS |
| Z-DAQ-PID | 1-CH universal analog I/O Modbus module with PID <br> control | ModBUS |
| S203T | Advanced triple phase network analyzer, 100 mA input | ModB |
| S203TA | Advanced triple phase network analyzer up to 5 Arms <br> input | ModBUS |
| ZC-3AO | 3 CH analog output (mA, V) CANopen module <br> ZC-4RTD4 Ch RTD (P100, Ni100, Pt500, Pt1000) input <br> CANopen module | CanOpen |
| ZC-8AI | 8 CH analog input (mA, V) CANopen module | CanOpen |
| ZC-8TC | 8 CH Thermocouple (J,K,E,N,S,R,B,T) CANopen <br> module | CanOpen |
| ZC-SG | 1 CH strain gauge CANopen module | CanOpen |

CANopen $®$ is a registered trademark of the CAN in Automation User's Group.
Modbus $®$ is a registered trademark of Modicon, Incorporated.

## Z-PC Line standards

The Z-PC Line modules comply with the CEE 2004/108/CE.

The buses communication of Z-PC Line comply the following standards:
-EIA RS-232 (RS-232 serial interface for bus communication)
-EIA RS-485 (RS-485 serial interface for bus communication)
-Cia 301 v4.02, Cia 401 v2.01 (CANopen)

# Distributed automation and ModBUS 

## Distributed systems

At the same time and in very large spaces, a industrial automation system have to manage:

- many sensors;
- many actuators;
- many control subsystems;
- outwards communication;
- data storage (the data will be used to subsequent processing);
- machine and human safely.

In particular, an industrial automation system is always constituted by:

- a microprocessor system: CPU, memories, timers, remote interface systems (RS485, RS232, TCP/IP, etc...), human interface systems (keyboards, displays, etc...);
- a capture-data system, which is able to acquire analog or digital signals, depending on the control application;
- a transducer system, which allows to carry out the control signals.

For industrial automation, there are two types of microcontroller-based control systems:

- embedded systems: integrated systems into a single electronic circuit;
- distributed systems: more electronic circuits connected to a single bus communication.

A communication bus is a set of electrical cables through which informations (address, data, signals, etc...) are transmitted.

Embedded systems allows to optimize the control system and to obtain high performance, but they have high cost of design (hardware, software) and it isn't possible to adapt them for other automation systems.
Instead, distributed systems have low cost of design (software) and it is possible to adapt them for other automation systems, at the price of a lower optimization. Moreover, distributed systems allows:

- to connect to a single bus a very high number of devices with variable degree of intelligence;
- to implement control systems with electrical strength through a simple programming.

In this context, Seneca proposes the Z-PC Line: embedded systems with ModBUS-RTU communication protocol based on RS232/RS485 serial interface. These systems are able to capture input signals (voltage, current, form thermocouple, from thermoresistance, etc...) and to provide output signals (voltage, current, by relay, by mosfet, etc...), to process analog and digital signals for industrial automation control system (drives, actuactors, etc...).

## Why ModBUS protocol?

ModBUS is a high-level protocol and one of the most widespread standard used for the communication between control devices. The main features of the ModBUS protocol are shown in the following points:

- it's easy to perform electrical connections;
- it's easy to perform setting parameters;
- it's easy to perform integration on supervision, control and automation systems;
- good performance;
- there aren't hardware constraints.

The ModBUS protocol defines the format and communication modality between a single master and one slave/more slaves, which responds to the queries come from master by transactions; the ModBUS protocol doesn't define the interpretation of the data (contents of registers), but it defines:

- communication modality between master and slaves;
- identification modality between transmitter and receiver;
- data interchange modality;
- errors.

The ModBUS protocol implemented in Seneca Z-PC Line allows the single query/single response transaction, with reference to a single slave.

D -3 The ModBUS protocol implemented in Seneca Z-PC Line does not allow the broadcast transaction.

The electrical data interchange is based on half-duplex transmission and the ModBUS protocol allows to connect the modules by two alternative modalities:

- point to point modality (RS232 serial interface)
- multipoint modality (RS485 serial interface)

The ModBUS protocol is used to perform communications between intelligent systems, for example: address identification of a data packet or module, implementation of control actions, response transmission, etc...
The Modbus protocol is aligned with many industrial automation products: PLCs, Temperature Controllers, displays, data registers, etc., which are able to communicate with a common supervisor easily.

## ModBUS protocol description

Field buses are used as systems to transmit the data, alternative to the analog signals; in particular, the ModBUS protocol is used to connect a supervisor computer to a Remote Terminal Unit (RTU) and to control a data acquisition system (SCADA, Supervisory Control And Data Acquisition).
The ModBUS protocol has been developed to allow the information interchange between control modules in industrial field, through a Master-Slave hierarchy: the slave modules are connected to a same bus communication and each is identified by its address. These modules are queried by a single Master periodically (polling); only the master can start a transaction through RS485 bus communication.

Master devices are Personal computer or controller, slave devices are used to detect signals or to perform some operations. Master device sends data-packet (query) to the Slaves: as each device is associated with a univocal address, only one device will respond with the required data.

There are two versions of the ModBUS protocol, which differ for the different numeric data representation (mostly): ModBUS RTU and ModBUS ASCII.

- The ModBUS ASCII has a redundant data representation (the data representation is more readable by persons).
- The ModBUS RTU has a hexadecimal-base data representation (the data representation is more compact; moreover ModBUS RTU is implemented using CRC, so it is more safety).

Most important ModBUS RTU specifications are shown in the following table.

| Characters | Binary values between 0-255 |
| :--- | :--- |
| Start of frame | Silence of 3.5 times |
| End of frame | Silence of 3.5 times |
| Initial bit | 1 |
| Data bits | 8 |
| Pause in message | 1.5 times of a byte |
| Check redundancy | CRC (Cyclic Redundancy Check) |

ModBUS RTU allows to transmit through bus a quantity of information greater than ModBUS ASCII, while ModBUS RTU is more safety. Communications are managed by a master and they are half-duplex; communications between slaves are not possible.

## RS232 and RS485 serial interfaces

Serial data transmission has many advantages, if it is compare to analog transmission:

- More robust error check
- More noise immunity
- More precision data interchange
- It is possible to send through bus any information type
- It is possible to implement advanced function to control and configure the devices.

In particular, the serial interface is the physical medium that realize a serial data transmission and implement the ModBUS protocol. There are two types of physical interface: RS232 or RS485. The main features of the ModBUS protocol interfaces are:

- Serial: the information bits are sent in sequence (one by one) through a wire.
- Asynchronous: the information bits are transmitted without additional bits necessary to synchronize the data interchange between transmitter and receiver. The synchronization between transmitter and receiver is implemented by a pause in the data packet: if the time of bus-communication pause is greater than 3.5 character time, the following received byte will be interpretated as an address (first byte of a new data packet) by receiver.


## RS232 serial interface

The electrical medium of the ModBUS protocol is the RS232 serial interface: it is based on a not-balanced communication line with a "Point to point" master/slave connection. The voltage signal is measured with reference to a common point. In particular, the amplitude of digital signal through RS232-bus communication can be: -12 V or +12 V . The value -12 V corresponds to " 1 " logic value (mark), instead +12 V corresponds to " 0 " logic value (space).

| Standard | ANSI/EIA-232-D (see "EIA RS-232 <br> specification") |
| :--- | :--- |
| Transmission | Asynchronous, baseband |
| Transmission type | Not balanced |
| Number of transmission line | 1 |
| Logic value | Logic value is the voltage referred to the signal <br> ground SG |
| Max distance | 15 m |
| Number of transmitter | 1 |
| Number of receiver | 1 |
| Logic value "0" | +12 V |
| Logic value "1" | -12 V |

For small distances, signal ground (reference) is uniquely defined; for this reason, use RS232 cable for distances less than 15 m .

Tipically, for the modules of Seneca Z-PC Line, the RS232-bus sampling time is equal to $417 \mu \mathrm{~s}$ because unchangeable baud-rate is 2400 baud ( $1 / 2400$ baud $=417 \mu \mathrm{~s}$ ). The unchangeable configuration for the RS232-bus communication parameters is shown in the following table.

| Communication | Data structure of <br> register | Baud-rate | Address of node |
| :--- | :--- | :--- | :--- |
| RS232 | 8 N 1 | 2400 | 1 |

$10-9$
Data structure of register equal to 8N1 means that the register is structured as follows: 8 data bits, no parity control ( N ), 1 stop bit.

## RS485 serial interface

The electrical medium of the ModBUS protocol is the RS485 serial interface: it is based on a differential and balanced communication line, with a characteristic impedance equal to $120 \Omega$. The voltage signal associated to a transmitted bit is the potential difference between two wires: $A$ and $B$, with reference to a ground wire (GND). In every time, only one transmitter is enabled. Moreover, it is necessary a master that manage which device can transmit data.

| Standard | ANSI/EIA-485 (see "EIA RS-485 specification") |
| :--- | :--- |
| Transmission | Asynchronous |
| Transmission type | Balanced |
| Number of transmission line | 1 |
| Logic value | Logic value is the voltage referred to the voltage <br> difference between two values (not referred to <br> signal ground) |
| Max distance | 1200 m (max shunt derivation: 2 m ) |
| Number of transmitter | $>1$ |
| Number of receiver | $>1$ |

The RS485 serial interface allows data transmission through bus with length greater than RS232 serial interface case. Moreover, the data transmission through RS485-bus communication is more robust (more noise immunity) than RS232-bus communication.

Tipically, for the modules of Seneca Z-PC Line, the RS485-bus sampling time is equal to $26 \mu \mathrm{~s}$ because changeable baud-rate is 38400 baud ( $1 / 38400$ baud=26 $\mu \mathrm{s}$ ). The changeable configuration for the RS485-bus communication parameters is shown in the following table.

| Communication | Data structure of <br> register | Baud-rate | Address of node |
| :--- | :--- | :--- | :--- |
| RS485 | 8N1 | $1200 ; 2400 ; 4800 ; ~ 9600 ;$ | From 1(D) to 255 |
|  |  | $19200 ; 38400$ (D); 57600; |  |

(D) Default value for each module of Seneca Z-PC Line
$1-\Leftrightarrow$ Data structure of register equal to 8 N 1 means that the register is structured as follows: 8 data bits, no parity control (N), 1 stop bit.

## Parity

The parity is a control system to manage communication errors: infact coupled electrical noises through bus communication correspond to a change of one bit/some bits. The parity allows to detect if there is or there isn't a change of a single bit (error) in data packet but doesn't allow to detect if there is or there isn't a change of more bits (error) in data packet. If the parity is enabled, it defines the number of " 0 " and " 1 " logic values transmitted through bus; this number can be configured: even or odd.

D -2 This control system allows to detect possible communication errors, but it can not to correct them. To implement this correction, there are more advanced control system (CRC) based on complex algorithms.

The modules of the Seneca Z-PC Line allow to manage the parity; in particular, there are three alternative modalities to configure the parity: no parity, even parity, odd parity.

## RS485-bus electric topology

The electrical topology used to connect to RS485 bus the modules of Seneca Z-PC Line is shown in the following figure.


As shown, there are three wires assigned to communication: A, B and GND. This topology allows an half-duplex transmission between electrical-equivalent modules (this means that tx and $r x$ are not enabled at the same time). The modules of Seneca Z-PC Line has a integrated transmitter and a integrated receiver.

With reference to RS485 standard, max 32 receivers with RS485-port input impedance equal to 1 "load" can be connected to bus communication, max 64 receivers with RS485-port input impedance equal to $1 / 2$ "load" can be connected to bus communication, and so on.

$$
32=R \cdot U=32 \cdot 1=64 \cdot \frac{1}{2}=128 \cdot \frac{1}{4}
$$

where $R$ is the number of the receivers and $U$ is the unit load for each type of receiver.
Connections of receivers with input impedance different from each other are allowed: for example,

$$
32=R 1 \cdot U 1+R 2 \cdot U 2=64 \cdot \frac{1}{4}+32 \cdot \frac{1}{2}
$$



## WARNING

Connect the master module to slave modules using chain connections; in this configuration, it's forbidden to perform length connection over 1200 m and derivations over 2 m without using K107A module.

It's forbidden to connect the slave modules to the master module using star connections without K107A module.


K107A module is a half-duplex RS485-bus repeater. It allows to exceed the limits of RS485 serial interface, in particular:

- to increase the maximum number of modules connected to the RS485 bus communication (32, 64, 96, etc...);
- to increase the length of RS485-bus communication (1200 m, $2400 \mathrm{~m}, 3600 \mathrm{~m}$, etc...);
- perform star connections.

To know more information about K107A module, visit the Internet site www.seneca.it. Max two K-module can be connected in series.


## WARNING

The RS485 bus is a transmission line, so characteristic-impedance matching must be performed. Infact if a transmission line is mismatched, the transmitted signal isn't absorbed by its load completely: a part of this signal is reflected back through transmission line and it can cause interferences.

To avoid reflection phenomena through RS485-bus communication (for long cable mainly), it is necessary to match characteristic-impedance. This operation allows to enable the RS485terminator resistance in modules of the Seneca Z-PC Line. This operation has the following weakness points:

- the current absorption is greater;
- the RS485 voltage-signal damping is greater.

To choose if it's necessary or it isn't necessary to match characteristic-impedance, look on the baud-rate and RS-485 cable length.

## A pratical example

In the following hypothesis:

- RS-485 bus length is equal to 1200 m (EIA RS-485 max value)
- RS-485 signal propagation velocity through RS485 bus cable is equal to 70\% of light velocity
the RS-485 signal takes $5.7 \mu \mathrm{~s}$

$$
\mathrm{t}=\frac{1}{0.7 \cdot \mathrm{c}} \cdot 1200=5.7 \mu \mathrm{~s}
$$

to complete a round trip.
If the baud-rate is equal to 4800 , the bit time is equal to $208 \mu \mathrm{~s}$ : since $208 \mu$ s is greater than $10 \cdot 5.7 \mu \mathrm{~s}$, characteristic-impedance matching is not required.

If the baud-rate is equal to 115200 , the bit time is equal to $9 \mu \mathrm{~s}$ : since $9 \mu \mathrm{~s}$ isn't greater than $10 \cdot 5.7 \mu \mathrm{~s}$, characteristic-impedance matching is required.

In the following table are shown some examples about the use of RS485 terminator.

| Bus <br> length | Time to <br> complete a <br> round trip | If Baudrate $=4800$ <br> (bit time $=208 \mu \mathrm{~s}$ ) | If Baudrate $=115200$ <br> (bit time $=9 \mu \mathrm{~s}$ ) |
| :---: | :---: | :---: | :---: |
| 1200 m | $5.7 \mu \mathrm{~s}$ | $208 \mu \mathrm{~s} \gg 57 \mu \mathrm{~s}$ <br> (TERMINATOR CAN BE OFF) | $9 \mu \mathrm{~s}<57 \mu \mathrm{~s}$ <br> (TERMINATOR MUST BE ON) |
| 600 m | $2.9 \mu \mathrm{~s}$ | $208 \mu \mathrm{~s} \gg 29 \mu \mathrm{~s}$ <br> (TERMINATOR CAN BE OFF) | $9 \mu \mathrm{~s}<29 \mu \mathrm{~s}$ <br> (TERMINATOR MUST BE ON) |
| 300 m | $1.43 \mu \mathrm{~s}$ | $208 \mu \mathrm{~s} \gg 14 \mu \mathrm{~s}$ <br> (TERMINATOR CAN BE OFF) | $9 \mu \mathrm{~s}<14 \mu \mathrm{~s}$ <br> (TERMINATOR MUST BE ON) |
| 10 m | 47.6 ns | $208 \mu \mathrm{~s} \gg 480 \mathrm{~ns}$ <br> (TERMINATOR CAN BE OFF) | $9 \mu \mathrm{~s}>480 \mathrm{~ns}$ <br> (TERMINATOR MUST BE ON) |
| 1 m | 4.76 ns | $208 \mu \mathrm{~s} \gg 48 \mathrm{~ns}$ <br> (TERMINATOR CAN BE OFF) | (TERMINATOR >> 48 ns |
|  |  |  |  |

To match characteristic-impedance in RS485-bus communication (for long cable mainly), execute the following operations (with reference to the following figure, which shows an example of a ModBUS network):

- switch the "RS485-terminator" resistance in Master and Slave5 modules to "ON" (see the following figure: Master and Slave5 modules are the two opposite ends of the RS485bus communication)
- switch the "RS485-terminator" resistance in Slave2-Slave4 modules to "OFF" (see the following figure: Slave2-Slave4 modules are connected to RS485-bus communication and they allow data transmission)


## Slaves



## Cable selection

Cable selection is important for plants that require high baud rate, high distance and in verynoise environment especially.

In these conditions, the signal through the cable decrease its amplitude because there is a nonzero resistance and there are losses due to dielectric-type used for insulation; tipically, a twisted pair cable is used.

To implement a RS485-bus communication, three cables are necessary: two for signal (A, B), one for reference (GND). Moreover, for high baud rate, is important to regard the characteristic impedance.

The sizing of RS485-bus electrical cable have to look on:

- number of the wires (for RS485-bus: A, B, GND)
- cable characteristic impedance (tipically: $120 \Omega$ )
- shielding

Tipically, the RS485-bus communication is constituted by a twisted-pair cable AWG24 or AWG22.

Cable manufacturers provide specific diagrams that show cable length in function of the required baud rate (example: see the following figure for AWG24). For this type of diagrams it is important to consider the operative conditions used to obtain these ones (signal type, RS485 terminator).


## Shielding

In very noised industrial plants and/or for long distances (> 100 m ), use a shield twisted-pair cable. To avoid closed rings, connect the shield to the GND at one point of the network.

Moreover, the shielded cables are used to have a mechanical strength greater than no-shielded cables mainly too.


It's forbidden to use the shield as ground connector.
High-frequencies: for each cable, connect the shield to the GND at both of ends, but ground connection have to be performed to one point (to avoid loops); for very-noised environment, connect every GND to ground using a 10 nF 400 V capacitance.

In the following table are shown the RS485 communication cable features.

| Distance between Master and Slave - <br> RS485 communication cable length | RS485 communication cable features |
| :--- | :--- |
| Few meters | No-shielded cable |
| $<100 \mathrm{~m}$ | Twisted and shielded cable |
| $>100 \mathrm{~m}$ | Special cable (example: CEAM CPR 6003 or <br>  <br> BELDEN 9841) |

## Message format

With reference to the Seneca Z-PC Line, the ModBUS transactions always involving the master module (it manages the RS485-bus communication) and a single slave to each data interchange.

## Data communication modality

The Seneca Z-PC Line has been developed using ModBUS RTU protocol, which is based on a communication message constituted by: 1 start bit (unchangeable), 8 data bits, 1 parity bit (optional), 1 or 2 stop bits and a bit sequence to control the data packet (CRC-16, 16 bit Cyclic Redundancy Checksum). The structure of an data packet is shown in the following figure:

| Module Address | Functional Code | Data Field | CRC-16 |
| :---: | :---: | :---: | :---: |

- Module Address (first byte). When a Master node requires the data, it sends (through bus) a data packet with Module Address equal to the queried-Slave address;
- Functional Code: it represents the function to execute or has already been executed;
- Data Field (2 bytes to each value). it represents all the data necessary to detail the operation to execute;
- CRC-16.
[1- $-\Rightarrow$ With reference to the Seneca Z-PC Line, the module address can't be " 0 ".

A typical communication through ModBUS consists in three steps:

1) a node makes a request to another node;
2) execution of actions necessary to satisfy the request;
3) return to initial node of the resulting informations.

## ModBUS functional code

The module is designed to communicate as slave according to the ModBUS-RTU protocol rules. The functional codes supported by modules of the Seneca Z-PC Line are shown in the following table.

| Functional <br> code | First <br> register <br> address | Name | Functional <br> code | Name |
| :--- | :--- | :--- | :--- | :--- |
| 01 | 00001 | Read Coil Status | 05 | Force Single Coil |
| 02 | 10001 | Read Input Status | 06 | Preset Single Register |
| 03 | 40001 | Read Holding <br> Register | 15 | Write Multiple Coils |
| 04 | 30001 | Read Input <br> Register | 16 | Write Multiple <br> Registers |

[1-3 Some modules of the Seneca Z-PC Line do not support all functional codes shown in the previous table.
[1- -3 To each functional code there is a registers range, and the first register has physical address equal to 0000 . In particular, in nxxxx notation: " n " means functional code, "xxxx" means address register (for example: if functional code=03, the first address is 40001).

In particular, the structure of an «Holding» register is shown in the following figure:
Many modules of the Seneca Z-PC Line allow to manage floating point data format, with reference to Holding Registers:

- to have at disposal an amount information greater than word data format;
- to identify very different type of numbers at the same time (for example: $23.367^{\circ} \mathrm{C}$ and 5.23e-6).
In this case, the content of two 16 bits-registers with consecutives addresses needs to be interpreted as a 32 bits-floating point number:

| Holding register address | Interpretation <br> (Reverse floating point) |
| :--- | :--- |
| $4 x x x x$ | More significant 16 bits, with reference to a FP-32bit number |
| $4 x x x x+1$ | Less significant 16 bits, with reference to a FP-32bit number |


| Holding register address | Interpretation <br> (Floating point) |
| :--- | :--- |
| $4 x x x x$ | Less significant 16 bits, with reference to a FP-32bit number |
| $4 x x x x+1$ | More significant 16 bits, with reference to a FP-32bit number |

To understand the RS485 registers table (for each module), see the following table.

| LEGEND OF REGISTERS TABLE |  |
| :--- | :--- |
| Term | Meaning |
| $/$ | The number in registers table require a decimal-base interpretation |
| $0 x$ | As prefix, the following number N requires a hexadecimal-base interpretation |
| 0 b | As prefix, the following number N requires a binary-base interpretation |


| M(L)SB | More (Less) significant 8 bits, with reference to one word (=16 bit register) |
| :--- | :--- |
| FP 32bit | The content of two 16 bits-registers with consecutive addresses needs to be <br> interpreted as a 32 bit-floating point number. The register description and scale <br> range refer to the FP 32 bit number |
| M(L)SW | More (Less) significant 16 bits, with reference to a FP 32 bit number |


| Bit [x:y] | Bit sequence between $x$ and $y$ ( $x, y$ included), with reference to one 16 bits <br> register (=1 word). If the term "Bit [x:y]" does not appear in a line, the register <br> description refers to full 16-bits sequence in connection with this word ("Bit <br> [15:0]") |
| :--- | :--- |
| $/$ | For registers with "R/W" (reading/writing) equal to "R", the terms in column <br> "Default" represent the unchangeable contents of these ones |

## Error management in ModBUS protocol

There are two types of error in ModBUS protocol:

1) Transmission Errors: these errors change the message format, message parity (if there is the parity) or CRC. A drive detects if there is a transmission errors into message: it considers "invalid" the message and it does not reply;
2) Operative Errors: if there is a operative error, the function can't be execute and the drive replies with a exception message. This message has: drive address, required function code, error code and CRC.

## An example:

A master requires the content of Coil 1180 (=0x049C) register at drive address 11 (=0x0B); read outputs status has "0x01" function code.

| ADDR | FUNCTION <br> CODE | DATA <br> start <br> (Addr HI) | DATA <br> start <br> (Addr <br> LO) | DATA <br> Bit \# <br> HI | DATA <br> Bit \# <br> LO | CRC <br> HI | CRC <br> LO |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0 \times 0 \mathrm{~B}$ | $0 \times 01$ | $0 \times 04$ | $0 \times 9 \mathrm{C}$ | XX | XX | XX | XX |

The Coil 1180 register does not exist into slave: the slave replies with a message that contains the "Illegal data address" error code ("0x02") and function code "129" (=0x81).

| ADDR | FUNCTION <br> CODE | DATA Exception <br> code | CRC <br> HI | CRC <br> LO |
| :--- | :--- | :--- | :--- | :--- |
| $0 \times 0 \mathrm{~B}$ | $0 \times 81$ | $0 \times 04$ | XX | XX |

As a rule, ModBUS protocol allows to manage four types of exception code:

| Exception <br> Code | Name | Meaning |
| :--- | :--- | :--- |
| 01 | Illegal function | The received function code (it is "0x01" in the previous <br> example) does not correspond to a function that can be <br> executed in addressed slave (it is "0x0B" in the previous <br> example) |
| 02 | Illegal data <br> address | The address in DATA field (it is "0x049C" in the previous <br> example) does not correspond to a register in addressed <br> slave (it is "Ox0B" in the previous example) |
| 03 | Illegal data value | The data value to assign does not correspond to a valid <br> value with reference to this register |
| 07 | Negative <br> acknowledgement | The function can be executed or attempt to write in a only- <br> read parameter |

## The Z-PC CANopen System

## Introduction

The Z-PC CANopen system allows the complete management of CANopen field bus.
It consist of:

- NR 2 CANopen master stations developed according to standard CiA DS-301 v4.02 (TWS3 and TWS64).
- NR 8 CANopen slave stations developed according to standard CiA DS-301 v4.02 and DS401 v2.0 (ZC-24DI, ZC-16DI8DO, ZC-24DO, ZC-8TC, ZC-4RTD, ZC-8AI, ZC-3AO, ZC-SG).
- BUS SENECA that allows easy installation of CANopen SENECA stations, equipped with internal termination resistors.


## - ZC-107FO repeater signal CANopen-based fiber optics

Thanks to Z-PC CANopen the station address and the baud rate is selectable through the configurator or by dip switches, making it even easier installation of the network. The stations performance combined with the baud rate up to 1Mbit / s leading the Z-CANopen PC at the top of the category.

## Basics on CANOpen Networking

## Introduction

The CAN protocol (Controller Area Network) was developed in the mid-80s for applications related to motor vehicles from the German Robert Bosch. It describes the communication protocol at the physical layer and data layer (levels 1 and 2 of the OSI model). Not anything specific in relation to higher levels and in particular with regard to the Protocol relating to the application level (level 7 of the OSI model). The CANopen protocol was standardized by the International CiA and is a protocol-level application that is based on CAN protocol with respect to the lower levels. It defines what data and services must be transmitted and the significance of data for different categories of devices.

CANopen Protocol is a standard application specific and is defined by the CIA DS301. The network management services defined in CANopen allow a simple initialization of the network. CAN is a communication system multi master. Unlike other bus systems, the connected modules are not identified, so are the messages sent on the bus. Participants in the network are authorized to send messages whenever the bus is free. Conflicts are resolved on the bus through a priority linked to the messages. CAN always sends broadcast messages that are divided into different levels of priority. All participants to the network have the same rights, then the communication is possible even without a master on the bus. The sending of data is decided independently by each station, but the data can be obtained from a remote station using a special message called "remote frame".

The CANopen specific (DS 301) indicates the technical and functional characteristics that each device must meet to be plugged into the network CANopen. The concepts underlying the CANopen are:

- The bus can contain up to 127 stations
- The device description is made by using a text file with .EDS extension. That file is supplied by the device manufacturer and is used to configure and use the device
- Communication is object-oriented through the use of messages PDO and SDO
- Complex services or low-priority messages are transmitted via SDO
- Data can be sent via PDO messages from all slaves on event or in response to the synchronization message.


## Standards

The CiA DS-301 profile communication specifies mechanisms for configuration and communication between devices in real time environments. CANOpen is used for transmission at Level 2 specification ISO 11898 and CAN 2.0 A + B. The CANopen device TWS is based on communication profile CiA draft CANOpen 301 Standard Version 4.01. The ZC SLAVE CANopen devices meet the profile for modules I / O CiA 401 Draft Standard Version 1.4.

## PDO/SDO Messages

CANopen implements communications services differ depending on the different types of communications objects transmitted. The two basic types of objects are the Process Data Object (PDO) and Service Data Objects (SDO). The PDO contains information such as realtime message identified with high priority. The maximum number of data contained into a PDO is 8 Bytes. The SDO contains system settings with low priority identifiers and can send, thanks to the automatic message fragmentation, even large moles of data. The exchange of data can be controlled by events or by a synchronization message (SYNC). Sending data on events greatly reduces the load of the bus, allowing a high-performance communication even with a reduced speed of the bus. It's also possibile to use the system with both modes simultaneously active. The Service Data Objects are transmitted using point to point mode. In addition to the SDO and PDO, CANopen offers other communication objects:

- Communication Objects for synchronize inputs and outputs
- Communication Objects for boot-up procedures (starting)
- Communication Objects for the "life guarding / node guarding"
- Communication Objects for emergency messages


## The Object Dictionary

The Object dictionary of a device gives the items required for the configuration of the device.
Access to the dictionary objects (read or write of parameters) is performed by SDO services. The dictionary object is composed of several parts:

- Features that apply to all CANopen devices (DS 301)
- Features that are valid for Input / Output devices
- Features that are manufacturer-dependent

The index for access to objects is standardized within the CANopen profiles, except for items defined by the manufacturer. The communication profile supports the objects $0 \times 1000$ and $0 \times 1018$. There are also objects for the configuration of PDO communication (index $0 \times 1400$, $0 \times 1600$ ).

With regard to the profile DS401 items are placed in the $0 \times 6000$ area.

## PDO Mapping

The mapping of PDO allows the customization of data to send / receive in order to optimize the employment of network bandwidth. Each PDO can contain up to 8 bytes of data.
The PDO is divided into TPDO and RPDO: TPDOs are related to the transmission of output data from the station, while RPDOs containing data transmitted to the station.

The types of possible transmission type for the PDO are illustrated in the following table:

| Type Nr | Cyclic | Acyclic | Synchronous | Asynchronous | RTR Only |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 |  | X | X |  |  |
| $1-240$ | X |  | X |  |  |
| $241-251$ |  |  | Reserved |  |  |
| 252 |  |  | X |  |  |
| 253 |  |  |  | X | X |
| 254 |  |  |  | X | X |
| 255 |  |  |  | X |  |

The type from 1 to 240 is the number of SYNC objects between two PDO transmissions. The type 252 updates values on SYNC reception but are not send.
The type 253 updates values on RTR reception.
The type 254 provides an application-specific device.
The type 255 provides an application defined in the profile of the device.

## PDO Linking

The Z-PC CANopen stations support the PDO Linking, this means that you can direct a TPDO from a CANopen slave station into a RPDO of another slave station without increase the master station CPU load.

## Technical Specifications

## CANopen MASTER Stations

The CANopen devices TWS3 and TWS64 have the capabilities of master CANOpen and implement the following features:

## CAN

- Managing CAN 2.0A network (that is, with a 11 bit identifier).
-Transmission rates supported: 10, 20, 50, 100, 125, 250, 500, 800.1000 Kbits/s)


## CANopen

- Standard DS 301 V4.0
- Supported profile DS 401 IO modules (digital and analog)


## NMT MASTER

- Single Master
- Management of 127 stations (from 1 to 127)
- Configuring stations through SDO messages
- NMT Start of sigle stations
- Monitoring through Node guarding
- Receiving emergency messages EMYC
- Generation of messages sync SYNC
- Master Heartbeat


## Input / Output

- Management of synchronous and asynchronous transmission
- Auto Grouping of inputs and outputs on PLC memory
- 256 transmission PDO containing a maximum of 8 bytes (1024 bytes maximum output)
- 256 receive PDO containing a maximum of 8 bytes (1024 bytes maximum input)


## CANopen Manager

- Read and import of EDS files
- Diagnostic data from devices
- Automatic generation of PDO messages


## CANopen SLAVE Stations

The CANOpen slave devices implement the following features:

## CAN

- CAN 2.0A network (that is, with a 11 bit identifier).
- Transmission rates supported: 20, 50, 125, 250, 500, 800.1000


## CANOpen

- Standard DS 301 V4.0
- Supported profile DS 401 IO modules (digital and analog)


## NMT SLAVE

- Address set (from 1 to 127) also from dip switches
- baudrate set also by dip switches
- Stations Configuartions through SDO messages
- Node guarding
- Emergency messages EMYC


## Input / Output Devices

- Send / Receive PDO synchronous and asynchronous
- Up to 5 PDO in transmission containing up to 8 bytes
- 1 PDO receive containing up to 8 bytes


## INPUT/OUTPUT

Depending on station type they are equipped with the following inputs / outputs:

- up to 24 digital inputs
- up to 24 digital outputs
- up to 8 digital outputs and 16 digital inputs on the same station
- up to 8 thermocouple inputs
- up to 4 inputs RTD
- up to 8 inputs current / voltage DC
- up to 3 analog output current / voltage DC
- 1 strain gauge bridge input


## CANopen ZC-107FO Repeater

The ZC-107FO is a CAN signal repeater through fiber optics. The repeater can also be used to expand the number of nodes within the same bus.
By connecting two ZC-107FO with each other through the fiber optic the CAN communication can be extended to a maximum length of two kilometers for a maximum Buade rate of 1 Mbit/s.

## Some guidelines to establish bus-cable dimensions

Cable and bus-termination resistance requirements must comply with the ISO 11898. In particular, the following table contains the maximum values of the bus-cable length as a function of conductor section and the number of the units connected to its ( N ). As you can see: the higher the conductor section, the higher the maximum length.

| Conductor section | Maximum length [m] |  |  |
| :---: | :---: | :---: | :---: |
| $\left[\mathrm{mm}^{2}\right]$ |  |  |  |$\quad \mathrm{N}=32 \quad \mathrm{~N}=64 \mathrm{~N}=100$

In addition, the following figure shows how the bus speed influences the maximum bus length achievable.


## Connecting the Z-PC CANOpen Series to the Seneca bus

## Bus Topology

CAN is based on a linear topology type with a shielded cable with two wires and termination resistors on each end of the cable. The communication speed varies between $10 \mathrm{kbit} / \mathrm{s}$ (> 1000 m ) and $1 \mathrm{Mbit} / \mathrm{s}(25 \mathrm{~m})$, depending on the length of the network.

## Communication Speed (Baudrate) and BUS Length

The maximum distance reached via the CANopen network depends on the speed of communication selected, the figure shows the different possibilities.

| Speed | $10 \mathrm{kbit} / \mathrm{s}$ | $20 \mathrm{kbit} / \mathrm{s}$ | $50 \mathrm{kbit} / \mathrm{s}$ | 125 <br> $\mathrm{kbit} / \mathrm{s}$ | 250 <br> $\mathrm{kbit} / \mathrm{s}$ | 500 <br> $\mathrm{kbit} / \mathrm{s}$ | 800 <br> $\mathrm{kbit} / \mathrm{s}$ | 1 <br> $\mathrm{Mbit} / \mathrm{s}$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BUS <br> Lenght | 5000 m <br> $(2)$ | m | 2500 <br> $(2)$ | m | 1000 <br> $(2)$ | m | $500 \mathrm{~m}^{(1)}$ | $250 \mathrm{~m}^{(1)}$ | 100 m | 50 m | 25 m |

${ }^{(1)}$ For distances over 200 meters is recommended the use of opto couplers.
${ }^{(2)}$ For distances over 1,000 meters is recommended the use of repeater signal ZC-107FO.

## The SENECA BUS

The Seneca bus has the following pinout:


## For AC Supply:

Connect the AC supply to the Power Supply AC pins.
Pull pin 8 (Ground) to earth on the cabinet board.

## For DC Supply:

Connect the DC supply to the Power Supply pins, it is not necessary to respect the supply polarity.

Pull pin 8 (Ground) to earth on the cabinet board.

## Connection of Z-PC-SLAVE CANopen and ZC-107FO stations to the SENECA BUS via the back IDC10 connector.



The connection to the bus of CANopen Slave station is done by inserting the back IDC10 plug in the bus Seneca.
The pin 1 to 4 of the bus are used to extend the CANopen bus outside the SENECA bus, in this case the signal GNDCAN (pin 1) should be linked to obtain a robust communication. The pin 4 (GNDSHLD) should be connected to the briding of the cable used to connect.
If it is necessary to use a T connection from the main bus line, see the following table for their maximum length (from ISO / DIS 11898):

| Speed | Max bus Length | Max T connection <br> Length |
| :--- | :---: | :---: |
| $20 \mathrm{kbit} / \mathrm{s}$ | 1000 m | $7,5 \mathrm{~m}$ |
| $125 \mathrm{kbit} / \mathrm{s}$ | 200 m | $3,75 \mathrm{~m}$ |
| $500 \mathrm{kbit} / \mathrm{s}$ | 100 m | $0,75 \mathrm{~m}$ |
| $1000 \mathrm{Mbit} / \mathrm{s}$ | 25 m | $0,3 \mathrm{~m}$ |

## Connection of the CANopen Master TWS3/TWS64 Station to the SENECA BUS via the back IDC10 connector

Set the jumpers as shown:


The connection is done by inserting the station back connector to the SENECA bus

Connection of CANopen Master TWS3/ TWS64 station to theSENECA BUS via Side Clamp

Set the jumpers as shown:


The pinout of IDC10 connector is :


## For AC Supply:

Connect the AC supply to the IDC10 connector Power Supply AC pins.

## For DC Supply:

Connect the DC supply to the IDC10 connector Power Supply pins it is not necessary to respect the supply polarity.

## BUS Signals:



The pins CANH, CANL and GNDCAN are used for CANopen bus signals, the GNDCAN signal must be connected to obtain a robust communication. If it is necessary to use a T connection from the main bus line, see the following table for their maximum length (from ISO / DIS 11898):

| Speed | Max BUS Length | Max T connection <br> length |
| :--- | :---: | :---: |
| $20 \mathrm{kbit} / \mathrm{s}$ | 1000 m | $7,5 \mathrm{~m}$ |
| $125 \mathrm{kbit} / \mathrm{s}$ | 200 m | $3,75 \mathrm{~m}$ |
| $500 \mathrm{kbit} / \mathrm{s}$ | 100 m | $0,75 \mathrm{~m}$ |
| $1000 \mathrm{Mbit} / \mathrm{s}$ | 25 m | $0,3 \mathrm{~m}$ |

## Terminations Enable and Verification on SENECA BUS

The $120 \Omega$ termination between signals CAN_L and CAN_H is already included in the SENECA bus and must be enabled using the on board dip switch.
The termination should be enabled both at the beginning (typically before the CANopen master) and end of the BUS (typically after the last CANopen slave station):


Note that a termination may be enabled directly to the TWS3/TWS64 stations through JP1 jumper.

After the enable operation, using a tester to verify the various impedances indicated:

| Measure | Value | Meaning |
| :--- | :--- | :--- |
| Between GND and <br> CAN_L | Infinity | OK |
|  | 0 | CAUTION: <br> Short circuit between GND and CAN_L |
|  | Infinity | OK |
|  | 0 | CAUTION: <br> Short circuit between GND and CAN_H |
| Between CAN_L <br> and CAN_H | About $60 \Omega$ | OK <br> Both terminations enabled |
|  | About $120 \Omega$ | CAUTION: <br> Only one termination enabled |
|  | $<50 \Omega$ | CAUTION: <br> More than two termination enabled |

## Connection of Z-PC CANOpen Series to a generic bus

## Bus Topology

CAN is based on a linear topology type with a shielded cable with two wires and termination resistors on each end of the cable. The communication speed varies between $10 \mathrm{kbit} / \mathrm{s}$ (> 1000 m ) and 1 Mbit / s ( 25 m ), depending on the length of the network.

## Communication Speed (Baudrate) and BUS Length

The maximum distance reached via the CANopen network depends on the speed of communication selected, the figure shows the different possibilities.

| Speed | $10 \mathrm{kbit} / \mathrm{s}$ | $20 \mathrm{kbit} / \mathrm{s}$ | $50 \mathrm{kbit} / \mathrm{s}$ | 125 <br> $\mathrm{kbit} / \mathrm{s}$ | 250 <br> $\mathrm{kbit} / \mathrm{s}$ | 500 <br> $\mathrm{kbit} / \mathrm{s}$ | 800 <br> $\mathrm{kbit} / \mathrm{s}$ | 1 <br> $\mathrm{Mbit} / \mathrm{s}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BUS <br> Lenght | 5000 m <br> $(2)$ | m | 2500 <br> $(2)$ | m | 1000 <br> $(2)$ | m | $500 \mathrm{~m}^{(1)}$ | $250 \mathrm{~m}^{(1)}$ | 100 m | 50 m |
| 25 m |  |  |  |  |  |  |  |  |  |  |

${ }^{(1)}$ For distances over 200 meters is recommended the use of opto couplers.
${ }^{(2)}$ For distances over 1,000 meters is recommended the use of repeater signal ZC-107FO.

Connection of Z-PC-SLAVE CANopen and ZC-107FO stations to the SENECA BUS via the back IDC10 connector.

The pinout of IDC10 connector is:


## For AC Supply:

Connect the AC supply to the Power Supply AC pins.

## For DC Supply:

Connect the DC supply to the Power Supply pins, it is not necessary to respect the supply polarity.

## BUS Signals:

The pins CANH, CANL and GNDCAN are used for CANopen bus signals, the GNDCAN signal must be connected to obtain a robust communication. If it is necessary to use a T connection from the main bus line, see the following table for their maximum length (from ISO / DIS 11898):

| Speed | Max BUS Length | Max T connection <br> length |
| :---: | :---: | :---: |
| $20 \mathrm{kbit} / \mathrm{s}$ | 1000 m | $7,5 \mathrm{~m}$ |
| $125 \mathrm{kbit} / \mathrm{s}$ | 200 m | $3,75 \mathrm{~m}$ |
| $500 \mathrm{kbit} / \mathrm{s}$ | 100 m | $0,75 \mathrm{~m}$ |
| $1000 \mathrm{Mbit} / \mathrm{s}$ | 25 m | $0,3 \mathrm{~m}$ |

## Connection of TWS3/TWS64 stations to a generic CANopen BUS via the back IDC10 connector

Set the jumpers as shown:


The pinout of IDC10 connector is :


## For AC Supply:

Connect the AC supply to the Power Supply AC pins.

## For DC Supply:

Connect the DC supply to the Power Supply pins, it is not necessary to respect the supply polarity.

## BUS Signals:



The pins CANH, CANL and GNDCAN are used for CANopen bus signals, the GNDCAN signal must be connected to obtain a robust communication. If it is necessary to use a T connection from the main bus line, see the following table for their maximum length (from ISO / DIS 11898):

| Speed | Max BUS Length | Max T connection <br> length |
| :---: | :---: | :---: |
| $20 \mathrm{kbit} / \mathrm{s}$ | 1000 m | $7,5 \mathrm{~m}$ |
| $125 \mathrm{kbit} / \mathrm{s}$ | 200 m | $3,75 \mathrm{~m}$ |
| $500 \mathrm{kbit} / \mathrm{s}$ | 100 m | $0,75 \mathrm{~m}$ |
| $1000 \mathrm{Mbit} / \mathrm{s}$ | 25 m | $0,3 \mathrm{~m}$ |

## Setting the dip-switches of Z-PC Stations

## Setting the station address by dip switches on CANopen slave devices

The Z-PC CANopen SLAVE devices have a series of DIP switches accessible from the hole on the container. The DIP switches are used for both the setting of the station number (ID) and for setting the speed of communication. The ID station is used to calculate the COB-ID of PDO, the SDO and Emergency objects. The binary weight of each DIP switch increases by the number of the switch, for example if the ID 1 is obtained by DIP4 $=\mathrm{ON}$, the ID 8 is obtained by DIP8 $=\mathrm{ON}$, etc.
The nodes can have values from 1 to 127. The COB ID allocation is made according to the Default Set Connection (CiA DS 301, 8.4.1).

| ADDRESS |  |  |
| :---: | :---: | :---: |
| 45678910 |  |  |
| SOFTWARE |  |  |
| PROGRAMMED |  |  |

The combination of the dip from 4 to 10 in OFF（Software Programmed）lets you configure the address from a CANopen configurator by the SDO protocol．

## Setting the communication speed of the CANopen slave stations

The communication speed setting is done through the first three DIP switches．The figure shows the pattern of allocation of speeds through the DIP switches．

BAUD RATE

| 123 $\square ⿴ 囗 口 阝$ | SOFTWARE PROGRAMMED |
| :---: | :---: |
| 10 | 20 kbps |
| 881 | 50 kbps |
| 108 | 125 kbps |
| \％ | 250 kbps |
| 010 | 500 kbps |
| 081 | 800 kbps |
| 日里 | 1 Mbps |

The figure is an example of a possible setting of DIP switches．The setting is the condition ID＝ 32 and communication speed $=500 \mathrm{kbits} / \mathrm{s}$ ．

| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ON | OFF | ON | OFF | OFF | OFF | OFF | OFF | ON | OFF |

The combination of dip 1 ．． 3 to OFF（Software Programmed）lets you set the baud rate by using a CANopen configurator by the SDO protocol．

## Extending a CANopen bus with the ZC107FO signal repeater

A clear example of the use of the ZC-107FO repeater is:


BUS2


## Setting the Baud rate BUS on ZC-107FO CANopen repeater



It is essential to set on the pair of ZC-107FO repeaters the same baud rate, the baud rate must coincide with the CANopen network that you want to extend.
The baud rate is adjustable via dip switches 7 .. 10, you can also insert directly on the repeater the termination resistance.

## How it works

The following chapter sets out the main aspects of the Z-PC CANopen SLAVE devices.

## Start procedure

When a device is switched on is carried in the state INITIALIZATION, the application and communication objects are assigned at this stage. When this phase is successfully completed, the device is automatically carried in PRE-OPERATIONAL state.


When the device is in PRE-OPERATIONAL state, communication via SDO is initiated. In this state, you can run the following settings via SDO:

- Setting the Guard Time and Life Time Factors.
- Setting the communication parameters of PDOs.
- Mapping of PDOs.
- Saving information.

In PRE-OPERATIONAL state the device is unable to perform either the PDO communication or transmit emergency messages.
In the OPERATIONAL stage the device can automatically send messages PDO and emergency messages.
In the STOPPED state (also indicated with PREPARED) the communication on the bus is turned off (SDO and PDO communication not possible), the only accepted command is a network command (for example a Start Remote Node).

## Default Set Connections

At start up by default the PDO reception is available, for example RPDO1 and RPDO2, with the COB-ID:

RPDO1 = 200h + Node ID
RPDO2 $=300 \mathrm{~h}+$ Node ID

At start up by default the PDO transmission is available, for example TPDO1 and TPDO2, with the COB-ID:

TPDO1 = 180h + Node ID
TPDO2 $=280 \mathrm{~h}+$ Node ID

Through the CANOpen network configurator you can change the default setting of the connections.

## Node Guarding

The Node Guarding enables the network administrator (typically a CANopen master station) to verify if a slave station has a fault. To detect what slave is in fault, the master sends the message to the Guard ID (100Eh) of a slave, every "Node Guard Time" through an RTR message for each node. The slaves reply with a Guard message, which contains a toggle bit, and the slave status. This reply message is used by the CANopen master to update the status of all slaves nodes connected and properly functioning.

## Life Guarding

While node guarding is used by the network administrator to detect if a slave station is in fault, the slave use the guarding messages to see if the master is present. This slave monitoring function is called life guarding. To detect a broken cable and force the outputs to the condition of fault with the CANOpen, you must use both the node and life guarding. To activate the life guarding the station master configures the Guard Time (item 100Ch) and the Life Time Factor (item 100Dh). If time monitoring resulting from Life Time = Life Time Factor $\cdot$ Guard Time [ms] expire before that the slave has received a telegram of guarding, the device sets the exits/inputs in fault mode and considers the communication with the master interrupted.

## Heart beat

The NMT slave sends to the NMT master a Nodeguarding event on a settable interval time. If the NMT master does not receive a valid Nodeguarding event from the slave within this time, the slave is asserted "fail".

## Quick start: CANopen with CODESYS 2.3

This chapter discusses the using and configuration process of the CANopen Master station into the CodeSys development environment used for the programming of PLC TWS3/TWS64. This environment uses an integrated CANOpen network configurator.

## Using the CodeSys CANopen integrated configurator

This section describes the use of the CodeSys CANopen integrated configurator to configure the network connected to the TWS3/TWS64 Master CANOpen. Please refer to the CodeSys software manuals for proper installation and a detailed description of its use.

## Loading of EDS files

It's essential to use the menu Extras / Add Configuration file to install the EDS device file before inserting it into the CANOpen net:

| CoDeSys - CANOPEN_TEST_CONFIG.pro* - [PLC Configuration] |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1ilil File Edit Project Insert Extras Online Window Help |  |  |  |  |  |  |
|  |  | Replace element <br> Calculate addresses |  |  |  |  |
| GPOUs |  |  |  | Base parameters CAN parameters Module p |  |  |
|  |  |  |  |  | baud rate: | 250000 |
|  |  |  |  | Com. | Period ( $\mu \mathrm{sec}$ ): | 100000 |
|  |  |  |  | Sync. Windo | Lenght ( $\mu$ sec): | 100 |
|  |  |  |  |  | Sync. COB.ID: |  |
|  |  |  |  |  | Node-ld: |  |
|  |  |  |  |  |  | $\checkmark$ Automa |

Once this operation was done by positioning itself in Resources / PLC Configuration, you can right click on the node "SENECA CPU TWS3 \& TWS64" and add a "CanMaster":


Once inserted the CANMaster positioning on right click menu you can view the various slave available and include them in the configuration:


In the below figure is shown the result obtained by selecting the ZC-8TC station:


```
Base parameters |CAN parameters | Receive PDO-Mapping | Send PDO-Mapping | Service Dat.1 |
```



## Configuration of the TWS Master CANOpen parameters

Positioning on CANMASTER[VAR], you can set its operating parameters.

```
Base parameters |AN parameters | Receive PDO-Mapping Send PDO-Mapping |ervi
            Module id: 693734
            Node id:
                                0
        Input address: %1B0
        Output address: %QBO
    Diagnostic address: %MB148
    Comment:
```

In the Basic Parameters window it's possible to insert the following parameters:

- Input Address: Shows the input memory location where the configurator starts to place the data of the Master CANOpen.
- Output Address: Shows the output memory location where the configurator starts to place the data of the Master CANOpen.
- Diagnostic address: indicates the location in memory where the CANopen Master diagnostics data are saved.


In the CAN parameters window you can configure the following parameters:

- Baud rate: Shows the speed of CANOpen network operations and must match the set of the DIP SWITCHES slaves stations
- Com Cycle Period: means the period between the release of two SYNC message
- Sync Window Length: temporal window within must be sent the synchronous PDOs
- Sync COB-ID: COB-ID assigned to the SYNC message sends from the master if you check the option "activate".
- Node-Id: The Node-id (1-127) is the node number which is used by the master for addressing the device in a CANopen network.
- Automatic Startup: If this option is activated, at a download or at starting up the PLC the CAN bus will be initialized and started automatically: If the option is not activated, the CanDevice will wait for an appropriate command.
- Support DSP301, DSP306 and v4.01: active option extensions to the Protocol, in particular the functionality of Heartbeat Master (ways of monitoring the station presence where slave stations also act actively). When activated, you can indicate in the next fields the generation time of the Heartbeat message. It is recalled that the Heartbeat protocol is not supported by the Z-PC
CANopen slaves stations.

```
Base parameters CAN parameters Module parameters
```

| Index | Name | Value | Default | Min. | Max. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | CanPort | 1 | 0 |  |  |
| 2 | RxOnly | No | No |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

In the MODULE parameters window you can configure the following parameters:

- CANPort: Shows the position of the CAN master port on TWS3/TWS64. Usually the first card has CanPort = 1, you can connect through TP-WIRE CAN additional ports on the same TWS3/TWS64 station.


## Parameters Settings of a ZC Slave

By clicking on the inserted ZC Slave module you can set its operating parameters.


In the base parameters window, you can enter the following parameters:

- Input Address: Shows the input memory location where the configurator starts to place the data of the CANOpen Slave.
- Output Address: Shows the output memory location where the configurator starts to place the data of the CANOpen Slave.
- Diagnostic address: indicates the location in memory where the CANopen Slave diagnostics data are saved


In the CAN parameters window you can configure the following parameters:

- Node ID: Node ID assigned to the slave CANOpen (valid only if the Z-PC CANopen slave station dip switches has dips 4 .. 10 in OFF.
- Write DCF: creates a DCF file for the node in question (this is an EDS file with the values instantiated in the configurator)
- Create all SDO's: creates and initializes all SDO items indicated in the EDS file, not just those that are changed
- Optional Device: the master checks for the slave device, if there is not recognised continues in its normal operation
- No initialization, the master initiates communication with the node without initialize the objects of the dictionary via SDO.
- Node Guarding: activates or deactivates the NodeGuard protocol for verifying the presence of the station by the slave master
- Guard time: the period to send the NodeGuard message in milliseconds.
- Life time factor: shows within time intervals the slave must receive a Guard message from the master, if not the slave pass in preoperational state.
- Activate Heartbeat generation: used to activate the Hertbeat protocol (Not supported by Z-PC CANopen slaves stations).
- Activate Heartbeat consumer: Allows to consume heartbeat messages (Not supported by ZPC CANopen slaves stations).
- Emergency Telegram: The station can produce the emergency messages in case of errors or failures.
- Communication Cycle is the time between two SYNC messages


In the Receive PDO Mapping window, you can configure and view the PDO telegrams sent from the master to the slave. On the left you can see the data that the slave is able to receive through PDOs. In the figure case is an 8 digital outputs. On the right you see the link between the PDO and data output.


Clicking to the Properties button it's possible to configure the properties of the PDO. In the window that appears this is an asynchronous transmission type PDO (the PDO is sent only in a trigger condition). If the type of transmission chosen is synchronous you can select after many SYNC the value must be updated.

In the Send SDO-Mapping window, you can configure and display the PDO sent by the slave master. On the left you can see the data that the slave is able to send via PDO. In the figure case is a 16 digital inputs and 8 digital ouputs. On the right you see the link between the PDO and data entry. Similarly to Receive PDO you can set the properties of individual PDO through the appropriate keys.


Through the Service Data Objects, you can configure different values from the default items listed in the dictionary (EDS file). For the meaning of individual items you must refer to the slave documentation. Only the changed values are sent via SDO communication at the slave initialization.


The parameter module window enables the specific slave property into the TWS PLC, in this case the diagnosis

| Base parameters | CAN parameters | Receive PDO-Mapping | Send PDO-Mapping | Service Data Objects | Module parameters |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Index Name Value Def... Min. Max. <br> 1 EnableDiags No No   |  |  |  |  |  |

## The CANopen library for CodeSys

This section describes the use of the program library for exchanging data between the master TWS3/TWS64 and the CANopen slave. Please refer to the software manuals for a detailed description.
In order to manage the CANopen code communication it is necessary to include the library EXOR_CANOpen.lib into the project. This transaction is obtained through the window opened from the menu Window | Library Manager:


## EXOR_CAN_NMT Function

Through the EXOR_CAN_NMT function it's possible to act selectively or generally. Selecting the zero address the command is sent to all stations. If the address is different from zero the command is sent only to the station with the same slave node number.
For the value Command are possible the following values:

Start Remote Node (CS=1),
Stop Remote Node (CS=2),
Enter Pre-Operational (CS=128),
Reset Node (CS=129) and
Reset Communication (CS=130).

## EXOR_CAN_SDO_RD Function

Through the EXOR_CAN_SDO_RD it's possible to read objects from a slave dictionary object.
The meaning of individual parameters are:

- bEnable: the reading occurs on FALSE-TRUE toggle
- wCanPort: CAN card port number
- wTXCOBID COB-ID used for the TX SDO message. In the figure case the node-id is 3 (0x600
+ nodeid = 1539)
- wRXCOBID COB-ID used for the RX SDO message. In the figure case the node-id is 3 ( $0 \times 580$
+ nodeid)
- windex: index of the object that you want to read
- ucSubinex: sub index of the object you want to read

In the next parameters the function returns the data type of reading and the actual value or the error if, for example, the object does not exist.

```
0013
0014 EXOR_CAN_SDO_RD_1(
0015 bEnable:=Start_Read,
0016 wCanPor:= 1,
0017 wTxCOBID:=1539,
0018 wRxCOBID:= 1411,
0019 wIndex:=Indice_R,
0020 ucSubIndex:=Sub_Indice_R,
0021 wDataType:=,
0022 bDone=>,
0023 diErrCod=>,
0024 dwAbortCod=> ,
0025 dilntegerValue=>,
0026 rFloatValue=> );
```


## EXOR_CAN_SDO_WR Function

Through the EXOR_CAN_SDO_WR it's possible to write CAN objects from the slave dictionary object.

The meaning of individual parameters are:

- bEnable: the writing occurs on FALSE-TRUE toggle
- wCanPort: CAN card number through which you are writing
- wTXCOBID number the user's message SDO used for transmission. In the case of the node with id 3 (600hex + nodeid)
- wRXCOBID number the user's message SDO used to receive. In the case of the node with id 3 (580hex + nodeid)
- windex: index of the object that you want to write
- ucSubinex: sub index of the object you want to write
- dilntegerValue: value to be written in the object
- rFloatValue: value to be written in the object

In the next parameters the function returns the data type of writing and the actual value or the error if, for example, the object does not exist.


## Quick Start: CANopen with ISAGRAF

This section describes the use of CANOpen in the ISaGRAF environment.

## Isagraf Library

The use of CANopen in ISAGARF requires loading library for CANopen. In particular, it is necessary to load the library for the IO boards canocfg2, canodi, canodo and canao:

| 自 EXOR ISaGRAF - Libraries |  |
| :---: | :---: |
| File Edit Tools | Options Help |
| 10 boards |  |
| canma16i <br> canma16o <br> canma32i <br> canma32o <br> canma8i <br> canma8o <br> canmdi <br> canmdo <br> canmicfg <br> canmocf <br> canoai <br> canoao <br> canocfg2 <br> canodi <br> canodo$\|$iicin <br> icind <br> icindw <br> iicout <br> iicoutd <br> iicoutdw | name: - CANopen Configuration <br> supplier: - EXOR <br> reference: - <br> description: - <br> creation date: -1999.02 .26 <br> author: - AM  <br> name. - CANopen Configuration <br> supplier: - EXOR <br> reference: <br> description: <br> creation date: - 1999.02.26 <br> author: - AM <br> Note: Normally you should not need to use the SPECIAL PARAMETERS nor the SPECIAL DIAGNOSTIC INFORMATION listed below $\qquad$ PARAMETERS $\qquad$ <br> Nodeld: <br> Useful only when SCM03 is a CANopen server <br> Baudrate [Kbps]: [10, 20, 50, 100, 125, 250, 500, 800, 1000] <br> ScanInterval [ms]: [1..65535] A new complete scansion of all l/O, i.e. sending of output values is started every this time. <br> NodeGuardRate: [0..65535] Node Guarding is executed every n Scan cycles, 0 means disabled. <br> NodeGuarding Function guarantee reliability and diagnostic of your CANopen network, by using this function the CANopen |

## Boards canocfg2

The board canocfg2 is used to configure the communication via the TWS CANopen master. The integration of the board is done through the menu Project | IO Connection.


The fields of the IO Boards have the following meanings:

- Nodeid: identification of the CANOpen master node
- Baudrate: Select the speed of the network CANOpen. It must be the same as set by the DIP switch on the slave.
- ScanInterval: scan time of the inputs and outputs in milliseconds.
- NodeGuardRate: cycles number of to scan before sending the NodeGuard message. The value 0 means disabled.
- InputRefreshRate: request for inputs delivery through Remote Transmission Request (not supported by Z-PC CANopen slaves)
- SyncEnable: Enabling SYNC message from the master
- StartCmdEnable: If TRUE the NMT start network command is given at boot-up or in case of Node Guarding error .

The special parameters (prescaler (1 .. 64), SyncJumpWidth (1 .. 4), TSetup (1 .. 16) THold (1 .. 8), SampleMode (0.. 1)) are used to select the speed of the network and have special meaning only if the parameter is Baudrate to zero. Normally should not be used.

Now you can point directly to the inputs and outputs of the slave stations using the appropriate boards. In the example below shows the use of a cando for to point to the first digital output of the slave with station number 1.


## Easy-SETUP

To configure the Seneca Z-PC Line modules, it is possible to use Easy-SETUP software, downloadable from the www.seneca.it; the configuration can be performed by RS232 or RS485 bus communication.

## Appendix

## EDS Files

The EDS files for the Z-PC CANopen Slave stations can be downloaded directly from the site http://www.seneca.it on the CANopen section.

## The module of Seneca Z-PC line

The Seneca Z-PC Line is a component line developed for automation and industrial-processes control: it represents a effective and reliable mean used to manage machine automation and small-medium size plants.

## The common strengths of Seneca Z-PC Line

The modules of Seneca Z-PC Line have interesting strengths:

- 1500 Vac isolation between: inputs, outputs, RS485-bus communications, power supply
- Configuration of the module (node) address and baud-rate by Dip-Switches
- It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
- Switching automatically RS485 to RS232 or vice versa
- Diagnostic available on front-side panel
- Integrated ModBUS protocol (and/or CANopen protocol)

Each module of Seneca Z-PC Line is compact, integrated and reliable; it allows:

- the acquisition/generation of each industrial signal type;
- the data-processing by effective supervision and control systems.

The wide range of modules allows to manage all I/O signal type: analog and digital, voltage and current, from thermocouple and thermo-resistance, relay and MOSFET. Moreover, these components provide PID controller, input filter, pulse counter, etc.. through bus communication (RS232 or RS485 serial interface), web-control, etc....

## The most common types of analog input

Seneca Z-PC Line modules allow to acquire signals from

| Voltage generator | Continue voltage signal (up to 10 V) supplied by <br> active sensors, proportional to the physical quantity <br> to measure (flow, pressure, speed, etc...) |
| :--- | :--- |
| Current generator | Continue voltage signal (up to 20 mA) supplied by active or <br> passive sensors, proportional to the physical quantity to <br> measure (flow, pressure, speed, etc...) |
| Potentiometer | Voltage value between two limits; it is given as percent <br> value |
| Thermo-couple (TC) | A TC is a couple of electric conductors with different <br> material, united between them (hot junction). <br> The connection with module causes another one <br> (cold junction). Every junction causes a potential <br> difference. These parameters allow to calculate hot <br> junction absolute temperature |
| Thermo-resistance <br> (RTD) | A RTD is a particular conductor material: its resistive value <br> depends on the temperature change |
| Load cell | A load cell is a sensor that process a weight to obtain a mV <br> signal |
| Network parameters | Voltage (up to 600 V), current, active power, reactive power, <br> apparent power, cos $\Phi$ (for single/three phase network) |

## The most common types of analog output

Seneca Z-PC Line modules allow to supply voltage signal and current signal (active and passive).

| Active signal | Current loop is powered externally; to measure current value, <br> a passive shunt (resistance) is used |
| :--- | :--- |
| Passive signal | Current loop is powered internally; to measure current value, <br> the module supplies the sensor |

## Common characteristics of Seneca Z-PC Line

Each Seneca Z-PC Line module is designed to ensure an accurate measure: noises from field must affect the measures at minimum possible. Moreover, the module must be protected against the electrical discharge. To obtain these conditions, a galvanic isolation is required: each Seneca Z-PC Line module has a 1500 Vac isolation between most important internal circuits (inputs, outputs, RS485, power supply, etc...).

| MODULE CASE | PBT, black |
| :--- | :--- |
| Case-type | Width $\mathrm{W}=100 \mathrm{~mm}$, Height $\mathrm{H}=112 \mathrm{~mm}$, Depth $\mathrm{D}=17.5 \mathrm{~mm}$ <br> (Z-module) <br> Width $\mathrm{W}=100 \mathrm{~mm}$, , Height $\mathrm{H}=112 \mathrm{~mm}$, Depth D $=35 \mathrm{~mm}$ <br> (double Z-module) |
| Dimensions | Removable 3-way screw terminals: <br> pitch 5.08 mm , sections $2.5 \mathrm{~mm}^{2}$ |
| Terminal board | IP20 (International Protection) |
| Protection class | ENVIROMENTAL CONDITIONS |
| Operating temperature | $-10^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$ |
| Humidity | $30 \ldots 90 \%$ to $40^{\circ} \mathrm{C}$ not condensing (during operation) |
| Max environmental <br> pollution degree | 2 |
| Storage temperature | $-20^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ |

109
The Z-4RTD-2, Z-8TC, ZC-24DI, ZC-24DO, ZC-16DI8DO modules have removable 4way screw terminals: pitch 3.5 mm , sections $1.5 \mathrm{~mm}^{2}$.

109
Protection class equal to IP20 (International Protection) means device protection degree against the external environmental factors. With reference to the " 20 " suffix, " 2 " is protection degree against solid and dust objects, " 0 " is protection degree against liquids.

In the following figure is shown the module dimensions and front-side panel for the most part of Seneca Z-PC Line modules. To know the meaning of the LEDs, see "Signalling LEDs" at the end of each module chapter.

Some modules (for example: Z-10-D-IN) have LEDs for input/output state too.


Case type and module dimensions for S203T and S203TA modules are different.

In the following figure is shown the Z-module case.

| MODULE DIMENSIONS | FRONT-SIDE |
| :--- | :--- |
|  | PANEL |



| $\begin{array}{\|c\|\|c\|} \hline 108 \\ 10 & 18 \\ 10 & 18 \\ \hline 10 \end{array}$ |  |  |
| :---: | :---: | :---: |
| 100 mm |  |  |



In the following figure is shown an example of the double Z-module case.


## Connections

To ensure a long duration and a proper functioning of the module, it's necessary to execute the following notes.


## WARNING

It is forbidden to obstruct the module ventilation openings.
It is forbidden to install the module near heat-emitting devices.

뭉ㅇㅇ
«Severe operating conditions» are defined as follows:

- high power supply voltage: exceed 30 Vcc or exceed 26 Vac;
- the module supplies the sensor;
- active current-type output (the output: has already powered on, needs to be connected to passive module).

If the modules are installed side by side, separate them by at least 5 mm in the following cases:

- the operating temperature exceeds $45^{\circ} \mathrm{C}$ and at least one of the severe operating conditions exists; or
- the operating temperature exceeds $35^{\circ} \mathrm{C}$ and at least two of the severe operating conditions exist.

The module is designed to be installed on DIN 46277 rail in vertical position: in this way, ventilation and easy installation are guaranteed.

| Article | Unit | Versions | Purchase codes |
| :---: | :---: | :---: | :---: |
| Z-PC-DIN | Bus support for ModBUS and CANopen modules on DINrail (single pitch: 17.5 mm ) | Head +2 slots with pitch 17.5 mm | Z-PC-DINAL2-17.5 |
|  |  | $\begin{aligned} & 2 \text { slots with pitch } \\ & 17.5 \mathrm{~mm} \end{aligned}$ | Z-PC-DIN2-17.5 |
|  |  | 8 slots with pitch 17.5 mm | Z-PC-DIN8-17.5 |
|  | Bus support for ModBUS and CANopen modules on DINrail (double pitch: 35 mm ) | Head +1 slot with pitch 35 mm | Z-PC-DINAL1-35 |
|  |  | 1 slot with pitch 35 mm | Z-PC-DIN1-35 |
|  |  | 4 slots with pitch 35 mm | Z-PC-DIN4-35 |

## Z-PC-DIN WITH SINGLE STEP ( 17.5 mm )



Z-PC-DIN WITH DOUBLE STEP ( 35 mm )


Z-PC-DIN4-35


Head is the Z-PC-DIN unit with screw terminals: to power the modules and to connect the modules to RS485-bus communication.

To power the module and to connect it to the RS485-bus communication (or CANopen) by screw terminals, connect to DIN rail the Z-PC-DINAL2-17,5 (or Z-PC-DINAL1-35) unit and the Z-PC-DIN2-17,5 units (or Z-PC-DIN1-35 units); use the screw terminals placed in Z-PC-DINAL2-17,5 unit (Z-PC-DINAL2-17,5 unit can be locked on DIN46277 rail).

The Z-PC-DIN units are constituted by PA6-Polyamide (Nylon) 6 with fiberglass at 30\%; in particular, the Z-PC-DINAL2-17,5 and Z-PC-DIN2-17,5 units:

1) to decrease the wiring time, because there is no need to connect 5 cables (the same ones for each node): two cables for power supply (AC+, AC-) and three cables for RS485-bus communication (A, B, GND);
2) to perform the hot swapping: it is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply;
3) to respect the recommended distance between adjacent modules: the ventilation slits is guaranteed.
4) to ensure a easy connection.

To power the module and to connect the module to RS485-bus (or CANopen), there is a connector (IDC10) in back-side panel.



To lock on DIN 46277 rail the module, execute in the order the following operations:

1) pull the two latchs outwards (latchs are placed in the back-side panel, near IDC10connector);
2) insert the IDC10-connector in a DIN rail free slot;
3) make sure that the IDC10-connector pins are inserted on the slot correctly;

D- 2 It's important insert the pins on the slot correctly because IDC10-connector is
polarized; this connection is facilitated by use of a female/male insertion between IDC10 connector and DIN rail slot.
4) press the two latchs inwards.


## WARNING

Power off the module before connecting: RS232 serial interface, RS485 serial interface, input, output.

To satisfy the electromagnetic compliance requirements:

- use shielded cables for signal transmission;
- connect the shield to a earth wire used specifically for instrumentation;
- insert space between these shielded cables and other cables used for power appliances (inverters, motors, induction ovens, etc...).


## RS232 bus communication

The module is designed to data interchange according to the ModBUS protocol rules, implemented by RS232 serial interface. The RS232 communication (with unchangeable parameters) has priority over the RS485 communication.

D-B The module has a Jack stereo connector in order to connect its to RS232-bus communication.


| DB9 pin | Signal | Signal name | RS232 code | V.24 code |
| :--- | :--- | :--- | :--- | :--- |
| 1 | DCD | Data-Carrier Detection | CF | 109 |
| 2 | RD | Received Data | BB | 104 |
| 3 | TD | Transmitted Data | BA | 103 |
| 4 | DTR | Data Terminal Ready | CD | $108 / 2$ |
| 5 | SG | Signal Ground | AB | 102 |
| 6 | DSR | Data Set Ready | CC | 107 |
| 7 | RTS | Request To Send | CA | 105 |
| 8 | CTS | Clear To Send | CB | 106 |
| 9 | RI | Ring Indicator | CE | 125 |

## Decommissioning and disposal

Disposal of Electrical \& Electronic Equipment (Applicable throughout the European Union and other European countries with separate collections programs). This symbol, found on your product or on its packaging, indicates that this product should not be treated as household waste when you wish to dispose of it. Instead, it should be handed over to an applicable collection point for the recycling of electrical \& electronic equipment. By ensuring this product is disposed of correctly, you will help prevent potential negative consequences to the environment and human health, which could otherwise be caused by inappropriate disposal of this product. The recycling of materials will help to conserve natural resources. For more detailed information about the recycling of the product, please contact your local city office, waste disposal service of the retail store where you purchased this product.

## Seneca Z-PC Line module: Z-D-IN

The Z-D-IN module acquires 5 single-ended digital signals, it converts them to a digital format (IN 1-5 state) and it counts the input-pulse number (pulse counter for IN 1-5).

## General characteristics

$>$ Acquisition of digital signals from sensors: Reed,NPN,PNP,Proximity,contact,etc...
$>$ Configuration of a filter applied to all input signals (Filter(1-254)) to attenuate the noise overlapped to the digital signals
> Pulse counters for IN1-5 digital signals, with max frequency equal to: 100 Hz (the signal is acquired from IN1-5); 10kHz (the signal is acquired from IN5)
> Power up to 5 sensors by internal supply voltage (Vaux=16V)
$>$ It is possible to configure the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply

## Features

| INPUT | 5 |
| :--- | :--- |
| Number | Cut-off frequency: 100 Hz (for IN1-5, if bit40009.7=0; for IN1-4 if <br> bitt0009.7=1); 10kHz (for IN5, if bit40009.7=1) |
| Input filter | Configurable between: 1[ms] and 254[ms] |
| Filter(1-254) to <br> attenuate the noise | This module provides inputs and power supply(Vaux) protection <br> against the overvoltage surge transient by transient suppressor <br> TVS (600W/ms); max current supplied from Vaux is 100mA <br> (limited by internal series PTC) |
| Protection | The sensor is detected «closed» if: acquired signal voltage >12 <br> Vdc and acquired signal curren» > 3 mA |
| Sensor=closed | The sensor is detected «open» if: acquired signal voltage <10 Vdc <br> and acquired signal current < 2 mA |
| Sensor=open | The screw terminal 12 (Vaux) supplies 16 V with reference to the <br> screw terminal 1 (GND) |
| Internal supply Vaux |  |
| CONNECTIONS | IDC10 connector for DIN 46277 rail (back-side panel) |
| RS485 interface | Between: power supply, ModBUS RS485, digital inputs |
| 1500 Vac ISOLATIONS | Bets |



| POWER SUPPLY | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Supply voltage | Min: $0.5 \mathrm{~W} ;$ Max: 2.5 W (to power 5 sensors) |
| Power <br> consumption |  |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

## Input connections

Power on the module with < 40 Vdc or < 28 Vac voltage supply. These upper limits must not be exceeded to avoid serious damage to the module.


Vaux* ( supplied from module ) = 16 Vdc

In the previous figure is shown the connection of the sensors $\mathrm{S} 1-\mathrm{S} 5$ to the 5 inputs of Z-D-IN module. It's possible to connect to the module the sensors: Reed, NPN, PNP, Proximity, contact, etc... To power these sensors, connect each of them between the screw terminal 12 (Vaux $=16 \mathrm{~V}$ with reference to the screw terminal $1=G N D$ ) and one of the inputs IN1-5.

## Dip-switches table

D -3 In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

| BAUD-RATE (Dip-Switches: DIP-SWITCH STATUS) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | Meaning |  |  |  |  |
|  |  | Baud-rate=9600 Baud |  |  |  |  |
|  | - | Baud-rate=19200 Baud |  |  |  |  |
| $\bullet$ |  | Baud-rate=38400 Baud |  |  |  |  |
| $\bullet$ | - | Baud-rate=57600 Baud |  |  |  |  |
| ADDRESS (Dip-Switches: DIP-SWITCH STATUS) |  |  |  |  |  |  |
| 3 | 4 | 5 | 6 | 7 | 8 | Meaning |
|  |  |  |  |  |  | Address and |
|  |  |  |  |  | $\bullet$ | Address=1 |
|  |  |  |  | $\bullet$ |  | Address=2 |
|  |  |  |  | $\bullet$ | $\bullet$ | Address=3 |
|  |  |  | $\bullet$ |  |  | Address=4 |
| X | X | X | X | X | X | ................ |
| $\bullet$ | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | Address=63 |
| RS485 TERMINATOR (Dip-Switches: DIP-SWITCH STATUS) |  |  |  |  |  |  |
| 9 | 10 | Meaning |  |  |  |  |
|  |  | RS485 terminator disabled |  |  |  |  |
|  | - | RS485 terminator enabled |  |  |  |  |

## RS485 Register table


(*) To modify the bit 40009.0, 40009.1 e 40009.2 state, it isn't necessary to reset the module because the modification is immediate; to modify the other bit state, execute in the order the following operations:
-write the new configuration in the register;
-reset the module (switch bit 40011.0 to 1 ).

| Baudrate Address | / | MSB, LSB | R/W |  | $\begin{aligned} & 40010 \\ & \text { (EEPROM } \\ & \text { 40074)(**) } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Baud-rate for RS485 (baud-rate of module/node if parameters are configurated by memory modality):$\begin{array}{ll} 0=4800 ; \quad 1=9600 ; \quad 2=19200 ; \quad 3=38400 ; \quad 4=57600 ; \\ 5=115200 ; 6=1200 ; 7=2400 \end{array}$ |  |  | 38400 | Bit [15:8] |
|  | Address for RS485 (address of module/node if parameters are configurated by memory modality): from $0 \times 01=1$ to $0 x F F=255$ |  |  | 1 | Bit [7:0] |
| Filter1-254 | Between:1[ms]; 254[ms] | Word | R/W |  | $\begin{aligned} & \hline \text { 40008 } \\ & \text { (EEPROM } \\ & 40072)(* *) \\ & \hline \end{aligned}$ |
|  | Filter(1-254) applied to all input-signals (except IN5 if bit $40009.7=1$ ). Limit values: if reg. $40008=1[\mathrm{~ms}]=$ filtering action to attenuate noise with frequency<1kHz (period $>1 \mathrm{~ms}$ ); if reg. $40008=254[\mathrm{~ms}]=$ filtering action to attenuate noise with frequency $<4 \mathrm{~Hz}$ (period $>254 \mathrm{~ms}$ ) |  |  | 3[ms] |  |

$\left.{ }^{* *}\right)$ The content of the 40008,40009 and 40010 registers is stored in the 40072,40073 and 40074 respectively (memory EEPROM), too. The module writes the content of the register: 40072 in 40008, 40073 in 40009, 40074 in 40010 in one of the following cases:
-when the module is connected to the RS485-bus (registers initialization);
-when the module is resetted (bit 40011.0 switched to 1 ).

| PulseCounter | Between:0;65535 | Word | R |  | 40003 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 16-bit pulse counter for input 1. To know the overflow of PulseCounterIN1 register, see bit 40002.8 or register 00009 |  |  | / |  |
| PulseCounter IN2 | Between:0;65535 | Word | R |  | 40004 |
|  | 16-bit pulse counter for input 2. To know the overflow of PulseCounterIN2 register, see bit 40002.9 or register 00010 |  |  | / |  |
| PulseCounter IN3 | Between:0;65535 | Word | R |  | 40005 |
|  | 16-bit pulse counter for input 3. To know the overflow of PulseCounterIN3 register, see bit 40002.10 or register 00011 |  |  | / |  |
| PulseCounter IN4 | Between:0;65535 | Word | R |  | 40006 |
|  | 16-bit pulse counter for input 4. To know the overflow of PulseCounterIN4 register, see bit 40002.11 or register 00012 |  |  | / |  |
| PulseCounter IN5 | Between:0;65535 | Word | R |  | 40007 |
|  | 16-bit pulse counter for input 5. To know the overflow of PulseCounterIN5 register, see bit 40002.12 or register 00013 |  |  | / |  |


| Overflow Inputs | Word $\quad \mathrm{R}$ |  | 40002 |
| :---: | :---: | :---: | :---: |
|  | These bits aren't used | / | Bit[15:13] |
|  | PulseCounterIN5 overflow: 0=there isn't; 1=there is. To reset, overwrite «0» from master | 1 | Bit 12 |
|  | PulseCounterIN4 overflow: 0=there isn't; 1=there is. To reset, overwrite «0» from master | 1 | Bit 11 |
|  | PulseCounterIN3 overflow: 0=there isn't; 1=there is. To reset, overwrite «0» from master | 1 | Bit 10 |
|  | PulseCounterIN2 overflow: 0=there isn't; 1=there is. To reset, overwrite «0» from master | 1 | Bit 9 |
|  | PulseCounterIN1 overflow: 0=there isn't; 1=there is. To reset, overwrite «0» from master | 1 | Bit 8 |
|  | These bits aren't used | / | Bit[7:5] |
|  | IN5 state: $0=$ S5 open(closed); 1=S5 closed(open), if bit40009.0=0(1) | 1 | Bit 4 |
|  | IN4 state: $0=$ S4 open(closed); 1=S4 closed(open), if bit40009.0=0(1) | 1 | Bit 3 |
|  | IN3 state: $0=$ S3 open(closed); 1=S3 closed(open), if bit40009.0=0(1) | 1 | Bit 2 |
|  | IN2 state: 0=S2 open(closed); 1=S2 closed(open), if bit40009.0=0(1) | 1 | Bit 1 |
|  | IN1 state: $0=$ S1 open(closed); 1=S1 closed(open), if bit40009.0=0(1) | / | Bit 0 |

The «Input Status»-type registers used for Z-D-IN module are shown in the following table:

| Name | Range | Interpretation of register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: | :---: |
| State IN1 | 0-1 | Word | R |  | 10001 |
|  | IN1 state: 0=S1 open(closed); 1=S1 closed(open), if bit40009.0=0(1) |  |  | / |  |
| State IN2 | 0-1 | Word | R |  | 10002 |
|  | IN2 state: $0=$ S2 open(closed); 1=S2 closed(open), if bit40009.0=0(1) |  |  | / |  |
| State IN3 | 0-1 | Word | R |  | 10003 |
|  | IN3 state: $0=$ S3 open(closed); 1=S3 closed(open), if bit40009.0=0(1) |  |  | / |  |
| State IN4 | 0-1 | Word | R |  | 10004 |
|  | IN4 state: $0=$ S4 open(closed); 1=S4 closed(open), if bit40009.0=0(1) |  |  | / |  |
| State IN5 | 0-1 | Word | R |  | 10005 |
|  | IN5 state: $0=$ S5 open(closed); 1=S5 closed(open), if bit40009.0=0(1) |  |  | / |  |

The «Coil Status»-type registers used for Z-D-IN module are shown in the following table:



## LEDs for signalling

In the front-side panel there are 9 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| ERR | Blinking light | The module has at least one of the errors/overflows described <br> in RS485 Registers table |
|  | Constant light | Module failure |
|  | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
| TX | Blinking light | The module sent a data packet |
|  | Constant light | Verify if the bus connection is corrected |
|  | Constant light | IN1-5 state equal to «1» |
|  | No light | IN1-5 state equal to «0» (if the power is on) |

## Filtering actions

In the following figure is shown the filtering action applied to the digital signals IN1-4 and IN5 (if bit40009.7=0).

LPF1 action: Input filter
Cut-off frequency equal to 100 Hz for IN1-5 (equal to 10 kHz for IN5 with bypass Filter 1-254, if bit40009.7=1).

LPF2 action: Filter 1-254
Cut-off frequency range to attenuate lower-frequencies noise: from 4 Hz to 1 kHz . The noise is overlapped to the desired digital signal.


## Seneca Z-PC Line module: Z-10-D-IN

The Z-10-D-IN module acquires 10 single-ended digital signals, it converts them to a digital format (IN 1-10 state) and it counts the input-pulse number (pulse counter for IN 1-10).

## General characteristics

> Acquisition of digital signals from sensor: Reed, NPN, PNP, Proximity, contact, etc...
$>$ Configuration of a filter applied to the input signals IN1-IN8 (Filter(1-254)) to attenuate the noise overlapped to the digital signals
$>$ Pulse counters for digital signals, with max frequency equal to: 100 Hz , 16bit-registers (the signal is acquired from IN1-8); 10kHz, 32bit-registers (the signal is acquired from IN9-IN10)
$>$ Advanced management of the pulse counters for digital signals IN9-IN10 (see table 1)
> Power of 10 sensors by internal supply voltage (Vaux=16V)
$>$ It is possible to configure the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply

Features

| INPUT | 10 |
| :--- | :--- |
| Number | Cut-off frequency: 100 Hz (for IN1-8); 10kHz (for IN9-10) |
| Input filter | Configurable between: $[\mathrm{ms}]$ and 254[ms] |
| Filter(1-254) to <br> attenuate the noise | This module provides inputs and power supply(Vaux) protection <br> against the overvoltage surge transient by transient suppressor <br> TVS (600W/ms); max current supplied from Vaux is 100mA <br> (limited by internal series PTC) |
| Protection | 4ms (for IN1-IN8); 50 $\mu \mathrm{ms}$ (for IN9-IN10) |
| Pulse min duration <br> (ton) | The sensor is detected «closed» if: acquired signal voltage >12 <br> Vdc and acquired signal current > 3 mA |
| Sensor=closed | The sensor is detected «open» if: acquired signal voltage <10 Vdc <br> and acquired signal current <2 mA |
| Sensor=open | The screw terminal 12 (Vaux) supplies 16 V with reference to the <br> screw terminal 1 (GND) |
| Internal supply Vaux |  |

Measure error for frequency: $2 \%$ of fmax (for IN1-IN8: $\pm 2 \mathrm{~Hz}$; for IN9-IN10: $\pm 200 \mathrm{~Hz}$ )
Measure error for period, ton, toff: 1 ms

| CONNECTIONS |  |
| :--- | :--- |
| RS485 interface | IDC10 connector for DIN 46277 rail (back-side panel) |
| $\mathbf{1 5 0 0}$ Vac ISOLATIONS |  |
|  | Between: power supply, ModBUS RS485, digital inputs |



| POWER SUPPLY |  |
| :--- | :--- |
| Supply voltage | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| Power <br> consumption | Min: $0.5 \mathrm{~W} ; \mathrm{Max}: 2.5 \mathrm{~W}$ |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

## Input connections

Power on the module with < 40 Vdc or $<28$ Vac voltage supply. These upper limits must not be exceeded to avoid serious damage to the module.

In the following figure is shown the connection of the sensors to the 10 inputs of Z-10-D-IN module. It's possible to connect to the module the sensors: Reed, NPN, PNP, Proximity, contact, etc... To power these sensors, connect each of them between the screw terminal 1 (Vaux $=16 \mathrm{~V}$ with reference to the screw terminal 12=GND) and one of the inputs IN1-10.


## Dip-switches table

Power off the module before configuring it by Dip-Switches to avoid serious damage due to electrostatic discharges.

D -3 In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

| BAUD-RATE (Dip-Switches: DIP-SWITCH STATUS) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | Meaning |  |  |  |  |
|  |  | Baud-rate=9600 Baud |  |  |  |  |
|  | $\bullet$ | Baud-rate=19200 Baud |  |  |  |  |
| $\bullet$ |  | Baud-rate=38400 Baud |  |  |  |  |
| $\bullet$ | $\bullet$ | Baud-rate=57600 Baud |  |  |  |  |
| ADDRESS (Dip-Switches: DIP-SWITCH STATUS) |  |  |  |  |  |  |
| 3 | 4 | 5 | 6 | 7 | 8 | Meaning |
|  |  |  |  |  |  | Address and |
|  |  |  |  |  | $\bullet$ | Address=1 |
|  |  |  |  | $\bullet$ |  | Address=2 |
|  |  |  |  | $\bullet$ | - | Address=3 |
|  |  |  | $\bullet$ |  |  | Address=4 |
| X | X | X | X | X | X | ................ |
| $\bullet$ | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | Address=63 |
| RS485 TERMINATOR (Dip-Switches: DIP-SWITCH STATUS) |  |  |  |  |  |  |
| 9 | 10 | Meaning |  |  |  |  |
|  |  | RS485 terminator disabled |  |  |  |  |
|  | $\bullet$ | RS485 terminator enabled |  |  |  |  |

## RS485 Register table



TABLE 1 - COUNT MODALITY OF PULSE COUNTERS FOR IN9 AND IN10

| Bit 40020.[12:8] | PulseCounter9 | PulseCounter10 |
| :--- | :--- | :--- |
| 0b00000 | +1 for each pulse acquired through IN9 | +1 for each pulse acquired through IN10 |
| Ob00001 | -1 for each pulse acquired through IN9 | +1 for each pulse acquired through IN10 |
| 0b00010 | +1 for each pulse acquired through IN9 | -1 for each pulse acquired through IN10 |
| 0b00100 | -1 for each pulse acquired through IN9 | -1 for each pulse acquired through IN10 |
| Ob01000 | +1 for each pulse acquired through <br> IN9;-1 for each pulse acquired through <br> IN10 | Deactivated |
| Ob10000 | if IN10=1, +1 for each pulse acquired <br> through IN9; if IN10=0, -1 for each <br> pulse acquired through IN9 | Deactivated |


(*) To modify the bit 40020.0, 40020.1 e 40020.2 state, it isn't necessary to reset the module because the modification is immediate; to modify the other bit state, execute in the order the following operations:
-write the new configuration in the register;
-reset the module (switch bit 40022.0 to 1 ).

| Baudrate Address | Address: from $0 x 01=1$ to $0 x F F=255$ | MSB, LSB | R/W |  | 40021 (EEPROM 40085) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Baud-rate for RS485 (baud-rate of module/node if parameters are configurated by memory modality):$\begin{aligned} & 0=4800 ; \quad 1=9600 ; \quad 2=19200 ; \quad 3=38400 ; \quad 4=57600 ; \\ & 5=115200 ; 6=1200 ; 7=2400 \end{aligned}$ |  |  | 38400 | Bit [15:8] |
|  | Address for RS485 (address of module/node if parameters are configurated by memory modality) |  |  | 1 | Bit [7:0] |
| Filter1-254 | Between:1[ms]; 254[ms] | Word | R/W |  | 40019 (EEPROM 40083) |
|  | Filter(1-254) applied to all input-signals (except IN9 and IN10). Limiting values: if reg.40019=1[ms]=filtering action to attenuate noise with frequency<1kHz (period $>1 \mathrm{~ms}$ ); if reg.40019=254[ms]=filtering action to attenuate noise with frequency $<4 \mathrm{~Hz}$ (period>254ms) |  |  | 3[ms] |  |

$\left.{ }^{* *}\right)$ The content of the 40008,40009 and 40010 registers is stored in the 40072,40073 and 40074 respectively (memory EEPROM), too. The module writes the content of the register: 40072 in 40008,40073 in 40009, 40074 in 40010 in one of the following cases:
-when the module is connected to the RS485-bus (registers initialization);
-when the module is resetted (bit 40011.0 switched to 1 ).

| Pulse Counter IN1 | Between:0; 32767 | Word | R |  | 40003 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 16-bit pulse counter for input 1. To know the overflow of Pulse CounterIN1 register, see bit 40015.0 or reg. 00017 |  |  | / |  |
| Pulse Counter IN2 | Between:0; 32767 | Word | R |  | 40004 |
|  | 16-bit pulse counter for input 2. To know the overflow of Pulse CounterIN2 register, see bit 40015.1 or reg. 00018 |  |  | / |  |
| Pulse Counter IN3 | Between:0; 32767 | Word | R |  | 40005 |
|  | 16-bit pulse counter for input 3. To know the overflow of Pulse CounterIN3 register, see bit 40015.2 or reg. 00019 |  |  | / |  |
| Pulse Counter IN4 | Between:0; 32767 | Word | R |  | 40006 |
|  | 16-bit pulse counter for input 4. To know the overflow of Pulse CounterIN4 register, see bit 40015.3 or reg. 00020 |  |  | / |  |
| Pulse Counter IN5 | Between:0; 32767 | Word | R |  | 40007 |
|  | 16-bit pulse counter for input 5. To know the overflow of Pulse Counter IN5 register, see bit 40015.4 or reg. 00021 |  |  | / |  |


| Pulse Counter IN6 | Between:0; 32767 | Word | R |  | 40008 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 16-bit pulse counter for input 6. To know the overflow of Pulse Counter IN6 register, see bit 40015.5 or reg. 00022 |  |  | / |  |
| Pulse Counter IN7 | Between:0; 32767 | Word | R |  | 40009 |
|  | 16-bit pulse counter for input 7. To know the overflow of Pulse Counter IN7 register, see bit 40015.6 or reg. 00023 |  |  | / |  |
| Pulse Counter IN8 | Between:0; 32767 | Word | R |  | 40010 |
|  | 16 -bit pulse counter for input 8 . To know the overflow of Pulse Counter IN8 register, see bit 40015.7 or reg. 00024 |  |  | / |  |
| PulseCounter9 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R |  | 40012 |
| PulseCounter9 LSW |  | FP32bit-LSW | R |  | 40011 |
|  | 32-bit pulse counter for input 9 and input 10 (to configure it, see bit40020.[12:8]). To know the overflow of PulseCounter9 register, see bit 40015.8 or reg. 00025 |  |  | / |  |
| Pulse Counter 10 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R |  | 40014 |
| Pulse Counter 10 LSW |  | FP32bit-LSW | R |  | 40013 |
|  | 32-bit pulse counter for input 9 and input 10 (to configure it, see bit40020.[12:8]). To know the overflow of PulseCounter10 register, see bit 40015.9 or reg. 00026 |  |  | / |  |
| Inputs |  | Word | R |  | 40002 |
|  | These bits aren't used |  |  | 1 | Bit[15:10] |
|  | IN10 state: $0=$ S10 open(closed); $1=$ S10 closed(open), if bit40020.0=0(1) |  |  | 1 | Bit 9 |
|  | IN9 state: $0=$ S9 open(closed); $1=$ S9 closed(open), if bit40020.0=0(1) |  |  | 1 | Bit 8 |
|  | IN8 state: $0=$ S8 open(closed); 1=S8 closed(open), if bit40020.0=0(1) |  |  | / | Bit 7 |
|  | IN7 state: 0=S7 open(closed); 1=S7 closed(open), if bit40020.0=0(1) |  |  | / | Bit 6 |
|  | IN6 state: $0=$ S6 open(closed); 1=S6 closed(open), if bit40020.0=0(1) |  |  | 1 | Bit 5 |
|  | IN5 state: 0=S5 open(closed); 1=S5 closed(open), if bit40020.0=0(1) |  |  | 1 | Bit 4 |
|  | IN4 state: $0=$ S4 open(closed); $1=$ S4 closed(open), if bit40020.0=0(1) |  |  | 1 | Bit 3 |
|  | IN3 state: 0=S3 open(closed); 1=S3 closed(open), if bit40020.0=0(1) |  |  | / | Bit 2 |
|  | IN2 state: $0=$ S2 open(closed); 1=S2 closed(open), if bit40020.0=0(1) |  |  | 1 | Bit 1 |
|  | IN1 state: $0=$ S1 open(closed); $1=$ S1 closed(open), if bit40020.0=0(1) |  |  | 1 | Bit 0 |
| Pulse Counters overflow |  | Word | R |  | 40015 |
|  | These bits aren't used |  |  | 1 | Bit[15:10] |
|  | PulseCounter10 overflow: 0=there isn't; 1=there is. To reset, overwrite "0" from master |  |  | / | Bit 9 |
|  | PulseCounter9 overflow: 0=there isn't; 1=there is. To reset, overwrite "0" from master |  |  | 1 | Bit 8 |
|  | PulseCounter8 overflow: 0=there isn't; 1=there is. To reset, overwrite "0" from master |  |  | / | Bit 7 |
|  | PulseCounter7 overflow: 0=there isn't; 1=there is. To reset, overwrite "0" from master |  |  | / | Bit 6 |


|  | PulseCounter6 overflow: 0=there isn't; 1=there is. To reset, overwrite "0" from master | 1 | Bit 5 |
| :---: | :---: | :---: | :---: |
|  | PulseCounter5 overflow: 0=there isn't; 1=there is. To reset, overwrite "0" from master | 1 | Bit 4 |
|  | PulseCounter4 overflow: 0=there isn't; 1=there is. To reset, overwrite "0" from master | 1 | Bit 3 |
|  | PulseCounter3 overflow: 0=there isn't; 1=there is. To reset, overwrite "0" from master | 1 | Bit 2 |
|  | PulseCounter2 overflow: 0=there isn't; 1=there is. To reset, overwrite "0" from master | 1 | Bit 1 |
|  | PulseCounter1 overflow: 0=there isn't; 1=there is. To reset, overwrite "0" from master | 1 | Bit 0 |
| Measure Type | Bit $\quad$ R/W |  | $\begin{array}{\|l\|} \hline 40018 \\ \text { (EEPROM } \\ \text { 40082) } \\ \hline \end{array}$ |
|  | Measure A performed on input A. If bit[15:12]=0b0000: frequency; if bit[15:12]=0b0001: period; if bit[15:12]=0b0010: ton; if bit[15:12]=0b0011: toff | 0b0001 | Bit[15:12] |
|  |  | 0b0001 | Bit[11:8] |
|  | Measure B performed on input B. If bit[7:4]=0b0000: frequency; if bit $[7: 4]=0 \mathrm{~b} 0001$ : period; if bit[7:4]=0b0010: ton; if bit[7:4]=0b0011: toff | 0b0001 | Bit[7:4] |
|  | Acquired input B, with reference to <br> bit $[3: 0 \mathrm{l}$    <br> bit    | 0b0010 | Bit[3:0] |
| Measure A | / ${ }^{\text {a }}$ / Word ${ }^{\text {a }}$ |  | 40017 |
|  | Measure A value: to know the measure type, see bit40018.[15:12], to know the acquired input, see bit40018.[11:8] | 1 |  |
| Measure B | / Word ${ }^{\text {l }}$, R |  | 40016 |
|  | Measure B value: to know the measure type, see bit40018.[7:4], to know the acquired input, see bit40018.[3:0] | / |  |

The «Input Status»-type registers used for Z-10-D-IN module are shown in the following table:

| Name | Range | Interpretation of register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: | :---: |
| State IN1 | 0-1 | Word | R | / | 10001 |
|  | IN1 state: $0=$ S1 open(closed); 1=S1 closed(open), if bit40020.0=0(1) |  |  |  |  |
| State IN2 | 0-1 | Word | R |  | 10002 |
|  | IN2 state: 0=S2 open(closed); 1=S2 closed(open), if bit40020.0=0(1) |  |  | / |  |
| State IN3 | 0-1 | Word | R |  | 10003 |
|  | IN3 state: 0=S3 open(closed); 1=S3 closed(open), if bit40020.0=0(1) |  |  | / |  |



The «Coil Status»-type registers used for Z-10-D-IN module are shown in the following table:


## LEDs for signalling

In the front-side panel there are 14 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| FAIL | Blinking light | The module has at least one of the errors/overflows described <br> in RS485 Registers table |
|  | Constant light | Module failure |
| RX | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
|  | Blinking light | The module sent a data packet |
|  | Constant light | Verify if the bus connection is corrected |
| $1-10$ | Constant light | IN1-10 state equal to «1» |
|  | No light | IN1-10 state equal to «0» (if the power is on) |

## Filtering actions

In the following figure is shown the filtering action applied to the digital signals IN1-IN10.

## LPF1 action: Input filter

Cut-off frequency equal to 100 Hz for IN1-8 (equal to 10kHz for IN9, IN10 with bypass Filter 1-254).

LPF2 action: Filter 1-254
Cut-off frequency range to attenuate lower-frequencies noise: from 4 Hz to 1 kHz . The noise is overlapped to the desired digital signal.

## Seneca Z-PC Line module: Z-D-OUT

The module Z-D-OUT controls 5 relays digital output (OUT1-OUT5).

## General characteristics

$>$ Management of the output state if the interval time of RS485-bus communication failure is greater than a configurable time (up to 25 sec )
$>$ Configuration of the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply

## Features

| OUTPUT | 5 |
| :--- | :--- |
| Number | Relays SPST (Single Pole Single Throw) normally open, with <br> common |
| Type | Screw terminals 7,8,9,10,11: 5A with 250Vac(if resistive load); 2A <br> (if inductive load). Screw terminal 12: 12A |
| Max current through <br> screw terminals |  |
| Max relay switching <br> frequency | 6 cycles/min(with resistive load); 1200 cycles/min(with no load) |
| Pick-up relay voltage | 18 V |
| Drop-out relay voltage | 2.4 V |
| Relay internal supply | With reference to the screw terminal 12 (GND), the relays are <br> supplied with 24Vdc internally |
| No-load adsorbed <br> current by a relay | 9 mA |
| Relay response time | $5 / 2 \mathrm{~ms}$ |
| CONNECTIONS | IDC10 connector for DIN 46277 rail (back-side panel) or screw <br> terminals: 4 (GND), 5(B), 6(A) |
| RS485 interface | Between: power supply, ModBUS RS485, digital output |
| 1500 Vac ISOLATIONS |  |



| POWER SUPPLY | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Supply voltage | Min: $0.5 \mathrm{~W} ; \mathrm{Max}: 2.5 \mathrm{~W}$ |
| Power <br> consumption |  |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

## Output connections

Power on the module with < 40 Vdc or < 28 Vac voltage supply. These upper limits must not be exceeded to avoid serious damage to the module.


It's forbidden that the current through the screw terminal 12 (common) is greater than 12A. It's forbidden that the current through the screw terminals $7,8,9,10,11$ is greater than 5 A .

## Dip-switches table

[^0]| BAUD-RATE (Dip-Switches: DIP-SWITCH STATUS) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | Meaning |  |  |  |
|  |  | Baud-rate=9600 Baud |  |  |  |
|  | - | Baud-rate=19200 Baud |  |  |  |
| $\bullet$ |  | Baud-rate=38400 Baud |  |  |  |
| $\bullet$ | - | Baud-rate=57600 Baud |  |  |  |
| ADDRESS (Dip-Switches: DIP-SWITCH STATUS) |  |  |  |  |  |
| 3 | 4 | 5 6 | 7 | 8 | Meaning |
|  |  |  |  |  | Address and |
|  |  |  |  | $\bullet$ | Address=1 |
|  |  |  | $\bullet$ |  | Address=2 |
|  |  |  | $\bullet$ | $\bullet$ | Address=3 |
|  |  | - |  |  | Address=4 |
| X | X | X X | X | X | ................ |
| $\bullet$ | $\bullet$ | $\bullet$ - | $\bullet$ | $\bullet$ | Address=63 |
| RS485 TERMINATOR (Dip-Switches: DIP-SWITCH STATUS) |  |  |  |  |  |
| 9 | 10 | Meaning |  |  |  |
|  |  | RS485 terminator disabled |  |  |  |
|  | - | RS485 terminator enabled |  |  |  |

RS485 register table

| Name | Range | Interpretation of register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MachineID | 1 | MSB, LSB | R |  | 40001 |
|  | Id_Code (Module ID) |  |  | $0 \times 02$ | Bit [15:8] |
|  | Ext_Rev (Module version) |  |  |  | Bit [7:0] |
| FWREV | / | Word | R |  | 40009 |
|  | Firmware Code |  |  |  |  |
| Status | 0-1 | Bit | R/W |  | 40007 |
|  | These bits aren't used |  |  | 1 | Bit [15:2] |
|  | Reset of module: $0=$ deactivated; 1 =activated |  |  | 0 | Bit 1 |
|  | Save configuration in memory (EEPROM). The content of 40003, 40004, 40005, 40006 registers is overwritten, respectively, in the 40067, 40068, 40069, 40070 registers (these ones are in memory EEPROM): 0=deactivated; $1=$ activated |  |  | 0 | Bit 0 |
| Eprflag | 0-1 | Bit | R/W |  | $\begin{aligned} & \hline 40005 \\ & \text { (EEPROM } \\ & \text { 40069) } \\ & \hline \end{aligned}$ |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | (*)Fault state enabling. <br> If bit40005.7=1 and if the interval time of RS485-bus communication failure is greater than Timeout/10 [sec], the relays $1-5$ and the LEDs1-5 will have the configuration that correspond to bit40003.X. <br> If bit40005.7=1 and if the module is connected to RS485bus communication for the first time, the relays 1-5 and the LEDs1-5 will have the configuration that correspond to bit40003.X and the bit 40003.X is overwritten to bit 40002. $X$, with $X=0 ; 4$. <br> $0=$ deactivated; $1=$ activated |  |  | 1 | Bit 7 |


|  | (*)Timer reset type. The module has a timer: if the interval time of RS485-bus communication failure is greater than Timeout/10[sec], the module overwrites the content of Fault Output (bits 40003.[0:4]) to Output (bits 40002.[0:4] and registers 00001-00005) <br> It's possible to reset this timer (the timer returns to «Timeout/10[sec]» automatically) when one of the following event occurs: 1) event=the Z-D-OUT module receives a valid message within Timeout/10[sec] (if bit 40005.6=1); 2) event=any module connected to the bus RS485 receives a valid message within Timeout/10[sec] (if bit 40005.6=0) | 0 | Bit 6 |
| :---: | :---: | :---: | :---: |
|  | This bit isn't used | 1 | Bit 5 |
|  | Parity for RS485: 0=even parity; 1=odd parity | 0 | Bit 4 |
|  | Parity for RS485: 0=deactivated; 1=activated | 0 | Bit 3 |
|  | (*)Delay for RS485 (delay of communication response: pauses between the end of Rx message and the start of Tx message): $0=$ there isn't; $1=$ there is | 0 | Bit 2 |
|  | This bit isn't used | 1 | Bit 1 |
|  | (*) With reference to the «Coil Status» ModBUS registers 00001-00005 and to the bit40002.0-bit40002.4, it is the state of the relay $1-5$. If bit $40005.0=0$ : relay $1-5$ open(closed) corresponds to "0"("1") and LED1-5 turned off(on); if bit $40005.0=1$ : relay 1-5 open(closed) corresponds to " 1 "("0") and LED1-5 turned on (off) | 0 | Bit 0 |

(*) To modify the bit 40005.0, 40005.2, 40005.6 and 40005.7 state, it isn't necessary to reset the module because the modification is immediate; to modify the other bit state, execute in the order the following operations: write the new configuration in the register and reset the module (switch bit 40007.0 to 1).

| Dip-Switch | 0-1 | Bit | R |  | 40008 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | These bits aren't used |  |  | / | Bit [15:8] |
|  | Dip-Switches [1:2] state. They correspond to module address for RS485 |  |  | 1 | Bit [7:6] |
|  | Dip-Switches [3:8] state. They correspond to module baud-rate for RS485 |  |  | / | Bit [5:0] |
| Baudrate Address | Address: from $0 \times 01=1$ to 0xFF=255 | MSB, LSB | R/W |  | 40006 (EEPROM 40070) |
|  | Baudrate for RS485 (baud-rate of module/node if parameters are configurated by memory modality):$\begin{array}{llll} 0=4800 ; \quad 1=9600 ; \quad 2=19200 ; & 3=38400 ; & 4=57600 ; \\ 5=115200 ; & 6=1200 ; 7=2400 & & \\ \hline \end{array}$ |  |  | 38400 | Bit [15:8] |
|  | Address for RS485 (address of module/node if parameters are configurated by memory modality) |  |  | 1 | Bit [7:0] |
| Output | 0-1 | Bit | R/W |  | 40002 |
|  | These bits aren't used |  |  | 1 | Bit [15:5] |
|  | Output OUT5 state:0=relay5 deactivated and LED5 turned off (there is no current through relay5); 1=relay5 activated and LED5 turned on (there is current through relay5) |  |  | 0 | Bit 4 |
|  | Output OUT4 state:0=relay4 deactivated and LED4 turned off (there is no current through relay4); 1=relay4 activated and LED4 turned on (there is current through relay4) |  |  | 0 | Bit 3 |


|  | Output OUT3 state:0=relay3 deactivated and LED3 turned <br> off (there is no current through relay3); 1=relay3 activated <br> and LED3 turned on (there is current through relay3) | 0 | Bit 2 |
| :--- | :--- | :--- | :--- |
|  | Output OUT2 state:0=relay2 deactivated and LED2 turned <br> off (there is no current through relay2); 1=relay2 activated <br> and LED2 turned on (there is current through relay2) | 0 | Bit 1 |
|  | Output OUT1 state:0=relay1 deactivated and LED1 turned <br> off (there is no current through relay4); 1=relay1 activated <br> and LED1 turned on (there is current through relay1) | 0 | R/W |
| Fault Output | 0-1 | Bit 0 | (EEPROM <br> $40067)$ |
|  | These bits aren't used | Bit [15:5] |  |
|  | Fault value of Output OUT5 state:0=relay5 deactivated <br> and LED5 turned off (there is no current through relay5); <br> 1=relay5 activated and LED5 turned on (there is current <br> through relay5) | 0 | Bit 4 |
|  | Fault value of Output OUT4 state:0=relay4 deactivated <br> and LED4 turned off (there is no current through relay4); <br> 1=relay4 activated and LED4 turned on (there is current <br> through relay4) | 0 | Bit 3 |
|  | Fault value of Output OUT3 state:0=relay3 deactivated <br> and LED3 turned off (there is no current through relay3); <br> 1=relay3 activated and LED3 turned on (there is current <br> through relay3) | 0 | Bit 2 |
|  | Fault value of Output OUT2 state:0=relay2 deactivated <br> and LED2 turned off (there is no current through relay2); <br> 1=relay2 activated and LED2 turned on (there is current <br> through relay2) | 0 | Bit 1 |

The «Coil Status»-type registers are shown in the following table:

| Name | Range | Interpretation of <br> register | R/W | Default |
| :--- | :--- | :--- | :--- | :--- |
| State OUT1 | $0-1$ | R/W |  | Address |
|  | Output OUT1 state:0=relay1 deactivated and LED1 turned <br> off (there is no current through relay1); $1=$ relay1 activated <br> and LED1 turned on (there is current through relay1) | 0 | 00001 |  |
| State OUT2 | $0-1$ | R/W |  |  |
|  | Output OUT2 state:0=relay2 deactivated and LED2 turned <br> off (there is no current through relay2); $1=$ relay2 activated <br> and LED2 turned on (there is current through relay2) | $/$ | 00002 |  |
| State OUT3 | 0-1 | Word |  |  |
|  | Output OUT3 state:0=relay3 deactivated and LED3 turned <br> off (there is no current through relay3); $1=$ relay3 activated <br> and LED3 turned on (there is current through relay3) | $/$ | 00003 |  |


| State OUT4 | 0-1 | Word | R/W |  | 00004 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Output OUT4 state:0=relay4 deactivated and LED4 turned off (there is no current through relay4); 1=relay4 activated and LED4 turned on (there is current through relay4) |  |  | 1 |  |
| State OUT5 | 0-1 | Word | R/W |  | 00005 |
|  | Output OUT5 state:0=relay5 deactivated and LED5 turned off (there is no current through relay5); 1=relay5 activated and LED5 turned on (there is current through relay5) |  |  | 1 |  |

## LEDs for signalling

In the front-side panel there are 9 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| FAIL | Blinking light | The module has at least one of the errors/overflows described <br> in RS485 Registers table |
|  | Constant light | Module failure |
| RX | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
|  | Blinking light | The module sent a data packet |
|  | Constant light | Verify if the bus connection is corrected |
| $1-5$ | Constant light | OUT1-5 state equal to «1» |
|  | No light | OUT1-5 state equal to «0» (if the power is on) |

## Seneca Z-PC Line module: Z-10-D-OUT

The module Z-10-D-OUT controls 10 digital outputs (OUT1-OUT10), each of them (by MOSFET) actives/deactivates a output load (LOAD1-LOAD10).

## General characteristics

$>$ It is possible to manage the output state if the interval time of RS485-bus communication failure is greater than a configurable time (up to 2000sec)
> Management of the output state if the interval time of a load short-circuited is greater than a configurable time (up to 8sec)
$>$ It is possible to measure and control the outputs supply Vext
$>$ Configuration of the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply

## Features

| OUTPUT | 10 (type: MOSFET with negative common) |
| :--- | :--- |
| Number | Max current through <br> each load |
| 0.5 A (if resistive load); 0.5 A (if inductive load). The supplied <br> currents sum through all loads (these currents are inwards with <br> reference to the screw terminal 1): <5 A (see «Output <br> connections»). For each MOSFET: max0.5 A |  |
| Max state-switching <br> frequency for each <br> load | 2 Hz |
| MOSFET protection | The MOSFETs are protected against: load short-circuited, over- <br> temperature |
| MOSFET supply | With reference to the screw terminal 12 (common), power the <br> MOSFETs by screw terminal 1 (Vext): min 6 V, max 30 V |
| MOSFET max energy | 40 mJ with inductive load |
| MOSFET response <br> time | $5 / 2$ ms |
| R 2 Dson | $0.75 \Omega$ |
| Switching delay | 1 ms (max) |
| CONNECTIONS | IDC10 connector for DIN 46277 rail (back-side panel) |
| RS485 interface | Between: power supply, ModBUS RS485, digital outputs |
| 1500 Vac ISOLATIONS |  |



| POWER SUPPLY | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Supply voltage | Min: $0.5 \mathrm{~W} ;$ Max: 2.5 W |
| Power <br> consumption |  |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

## Output connections

Power on the module with < 40 Vdc or $<28 \mathrm{Vac}$ voltage supply. These upper limits must not be exceeded to avoid serious damage to the module.


It's forbidden that the current through the screw terminal 1 (Vext) is greater than 5A.

## Dip-switches table

D -3 In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

| BAUD-RATE (Dip-Switches: DIP-SWITCH STATUS) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | Meaning |  |  |  |  |
|  |  | Baud-rate=9600 Baud |  |  |  |  |
|  | $\bullet$ | Baud-rate=19200 Baud |  |  |  |  |
| $\bullet$ |  | Baud-rate=38400 Baud |  |  |  |  |
| $\bullet$ | - | Baud-rate=57600 Baud |  |  |  |  |
| ADDRESS (Dip-Switches: DIP-SWITCH STATUS) |  |  |  |  |  |  |
| 3 | 4 | 5 | 6 | 7 | 8 | Meanin |
|  |  |  |  |  |  | Addre |
|  |  |  |  |  | - | Addre |
|  |  |  |  | $\bullet$ |  | Addre |
|  |  |  |  | $\bullet$ | - | Addre |
|  |  |  | - |  |  | Addre |
| X | X | X | X | X | X | ..... |
| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | Addre |
| RS485 TERMINATOR (Dip-Switches: DIP-SWITCH STATUS) |  |  |  |  |  |  |
| 9 | 10 | Meaning |  |  |  |  |
|  |  | RS485 terminator disabled |  |  |  |  |
|  | $\bullet$ | RS485 terminator enabled |  |  |  |  |

## RS485 registers table

| Name | Range $\quad$Interpretation of <br> register$\quad$ R/W | Default | Address |
| :---: | :---: | :---: | :---: |
| MachinelD | MSB, LSB |  | 40001 |
|  | Id_Code (Module ID) | 0x0D | Bit [15:8] |
|  | Ext_Rev (Module version) |  | Bit [7:0] |
| FWREV | / ${ }^{\text {l }}$ ( Word ${ }^{\text {l }}$ |  | 40023 |
|  | Firmware Code |  |  |
| Errors |  |  | 40002 |
|  | These bits aren't used | / | Bit [15:7] |
|  | Output supply voltage Vext (applied to screw terminal 1, with reference to screw terminal 12) (if bit40012.1=1): $0=$ the outputs are correctly supplied (Vext>VextTh); 1=the outputs aren't correctly supplied (Vext<VextTh) | 1 | Bit 6 |
|  | These bits aren't used | 1 | Bit [5:4] |
|  | Outputs OUT1-OUT10 error: 0=no one output has an error; $1=$ at least one output has an error | 1 | Bit 3 |
|  | These bits aren't used | / | Bit [2:1] |
|  | Loads short-circuited error: 0=no one load short-circuited; $1=$ at least one load short-circuited (see reg.40007) | / | Bit 0 |
| Diagnostics Enabling |  |  | 40015 |
|  | These bits aren't used | / | Bit [15:10] |
|  | Output OUT10 diagnostics: $0=$ deactivated; $1=$ activated (if bit40015.9=1, bit40004.9 is enabled) | 1 | Bit 9 |
|  | Output OUT9 diagnostics: $0=$ deactivated; $1=$ activated (if bit40015.8=1, bit40004.8 is enabled) | 1 | Bit 8 |
|  | Output OUT8 diagnostics: 0=deactivated; 1=activated (if bit40015.7=1, bit40004.7 is enabled) | 1 | Bit 7 |
|  | Output OUT7 diagnostics: 0=deactivated; 1=activated (if bit40015.6=1, bit40004.6 is enabled) | 1 | Bit 6 |
|  | Output OUT6 diagnostics: 0=deactivated; 1=activated (if bit40015.5=1, bit40004.5 is enabled) | 1 | Bit 5 |
|  | Output OUT5 diagnostics: 0=deactivated; 1=activated (if bit40015.4=1, bit40004.4 is enabled) | 1 | Bit 4 |
|  | Output OUT4 diagnostics: 0=deactivated; 1=activated (if bit40015.3=1, bit40004.3 is enabled) | 1 | Bit 3 |
|  | Output OUT3 diagnostics: $0=$ deactivated; $1=$ activated (if bit40015.2=1, bit40004.2 is enabled) | 1 | Bit 2 |
|  | Output OUT2 diagnostics: $0=$ deactivated; $1=$ activated (if bit40015.1=1, bit40004.1 is enabled) | 1 | Bit 1 |
|  | Output OUT1 diagnostics: $0=$ deactivated; $1=$ activated (if bit40015.0=1, bit40004.0 is enabled) | 1 | Bit 0 |
| Diagnostics | 0-1 |  | 40004 |
|  | These bits aren't used | 1 | Bit [15:10] |
|  | Output OUT10 error (if bit 40015.9=1): 0=there isn't; $1=$ there is. To reset, overwrite " 0 " from master | 1 | Bit 9 |
|  | Output OUT9 error (if bit 40015.8=1): 0=there isn't; $1=$ there is. To reset, overwrite " 0 " from master | / | Bit 8 |
|  | Output OUT8 error (if bit 40015.7=1): 0=there isn't; 1 =there is. To reset, overwrite " 0 " from master | / | Bit 7 |
|  | Output OUT7 error (if bit 40015.6=1): 0=there isn't; $1=$ there is. To reset, overwrite " 0 " from master | / | Bit 6 |
|  | Output OUT6 error (if bit 40015.5=1): 0=there isn't; $1=$ there is. To reset, overwrite " 0 " from master | / | Bit 5 |


|  | Output OUT5 error (if bit 40015.4=1): 0=there isn't; <br> $1=$ there is. To reset, overwrite " 0 " from master | $/$ | Bit 4 |
| :--- | :--- | :--- | :--- |
|  | Output OUT4 error (if bit 40015.3=1): 0=there isn't; <br> $1=$ there is. To reset, overwrite " 0 " from master | $/$ | Bit 3 |
|  | Output OUT3 error (if bit 40015.2=1): 0=there isn't; <br> $1=$ there is. To reset, overwrite " 0 " from master | $/$ | Bit 2 |
|  | Output OUT2 error (if bit 40015.1=1): 0=there isn't; <br> $1=$ there is. To reset, overwrite " 0 " from master | $/$ | Bit 1 |
|  | Output OUT1 error (if bit 40015.0=1): 0=there isn't; <br> $1=$ there is. To reset, overwrite " 0 " from master | Bit 0 |  |

If at least one bit 40004. $\mathrm{X}(\mathrm{X}=0 ; 9$ ) is equal to « $1 »$, the bit 40002.3 switches to « 1 ». To reset the bit 40002.3 (bit40002.3=0), overwrite «0» to all the bits 40004.X.

| Shorted Outputs | 0-1 | Bit | R |  | 40007 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | These bits aren't used |  |  | 1 | Bit [15:10] |
|  | LOAD10 short-circuited error: $0=$ there isn't; $1=$ there is (if bit40007.9=1 then bit 40002.0=1) |  |  | 1 | Bit 9 |
|  | LOAD9 short-circuited error: $0=$ there isn't; $1=$ there is (if bit40007.8=1 then bit 40002.0=1) |  |  | / | Bit 8 |
|  | LOAD8 short-circuited error: $0=$ there isn't; $1=$ there is (if bit40007.7=1 then bit 40002.0=1) |  |  | 1 | Bit 7 |
|  | LOAD7 short-circuited error: $0=$ there isn't; $1=$ there is (if bit40007.6=1 then bit 40002.0=1) |  |  | 1 | Bit 6 |
|  | LOAD6 short-circuited error: $0=$ there isn't; $1=$ there is (if bit40007.5=1 then bit 40002.0=1) |  |  | 1 | Bit 5 |
|  | LOAD5 short-circuited error: $0=$ there isn't; $1=$ there is (if bit40007.4=1 then bit 40002.0=1) |  |  | 1 | Bit 4 |
|  | LOAD4 short-circuited error: $0=$ there isn't; $1=$ there is (if bit40007.3=1 then bit 40002.0=1) |  |  | / | Bit 3 |
|  | LOAD3 short-circuited error: $0=$ there isn't; 1=there is (if bit40007.2=1 then bit 40002.0=1) |  |  | 1 | Bit 2 |
|  | LOAD2 short-circuited error: $0=$ there isn't; $1=$ there is (if bit40007.1=1 then bit 40002.0=1) |  |  | 1 | Bit 1 |
|  | LOAD1 short-circuited error: $0=$ there isn't; $1=$ there is (if bit40007.0=1 then bit 40002.0=1) |  |  | / | Bit 0 |
| Address Parity |  | MSB, LSB | R/W |  | 40010 |
|  | Address for RS485 (address of module/node if parameters are configurated by memory modality): from $0 \times 01=1$ to $0 \times F F=255$ |  |  | 1 | Bit [15:8] |
|  | Parity for RS485: 0=there isn't; $1=$ even parity; 2=odd parity |  |  | 0 | Bit [7:0] |
| Baudrate Delay | Delay: from $0 \times 00=0$ to $0 \times F F=255$ | MSB, LSB | R/W |  | 40011 |
|  | Baudrate for RS485 (baud-rate of module/node if parameters are configurated by memory modality):$\begin{array}{lll} 0=4800 ; \quad 1=9600 ; \quad 2=19200 ; & 3=38400 ; \quad 4=57600 ; \\ 5=115200 ; 6=1200 ; 7=2400 & & \\ \hline \end{array}$ |  |  | 38400 | Bit [15:8] |
|  | Delay for RS485 (delay of communication response: pauses between the end of Rx message and the start of Tx message) |  |  | 0 | Bit [7:0] |
| Command | 0xC1A0; 0xBDAC | Word | R/W |  | 40024 |
|  | Module reset, if reg.40024=0xC1A0; the module writes the Dip-Switch state in reg. 40025 , if reg. $40024=0 \times B D A C$ |  |  |  |  |



If one of the bits40003.X (or one "Input Status" register) is equal to «1», it's possible to detect if the corresponding load is short-circuited after TimeoutShort/30[sec]. In this case: bit40002.0=1, bit40002.3=1, bit40004. $X=1$, bit $40007 . X=1(X=[0 ; 9])$ and the LED FAIL is on (see reg.40012). If one of the bits40003. X (or one "Input Status" register) is equal to «0», it isn't possible to detect if the corresponding load is short-circuited, though bit 40003.X switches from «0» to «1». In this case, reset the bit 40004.X.

| Fault Outputs | 0-1 Bit $^{\text {0 }}$ |  | 40005 |
| :---: | :---: | :---: | :---: |
|  | These bits aren't used | 1 | Bit [15:10] |
|  | Fault value for output OUT10 state: $0=$ LOAD10 is deactivated (there is no current through LOAD10); $1=$ LOAD10 is activated (there is current through LOAD10) | 0 | Bit 9 |
|  | Fault value for output OUT9 state: 0=LOAD9 is deactivated (there is no current through LOAD9); $1=$ LOAD9 is activated (there is current through LOAD9) | 0 | Bit 8 |
|  | Fault value for output OUT8 state: $0=$ LOAD8 is deactivated (there is no current through LOAD8); $1=$ LOAD8 is activated (there is current through LOAD8) | 0 | Bit 7 |
|  | Fault value for output OUT7 state: $0=$ LOAD7 is deactivated (there is no current through LOAD7); $1=$ LOAD7 is activated (there is current through LOAD7) | 0 | Bit 6 |
|  | Fault value for output OUT6 state: 0=LOAD6 is deactivated (there is no current through LOAD6); $1=$ LOAD6 is activated (there is current through LOAD6) | 0 | Bit 5 |
|  | Fault value for output OUT5 state: 0=LOAD5 is deactivated (there is no current through LOAD5); $1=$ LOAD5 is activated (there is current through LOAD5) | 0 | Bit 4 |
|  | Fault value for output OUT4 state: 0=LOAD4 is deactivated (there is no current through LOAD4); $1=$ LOAD4 is activated (there is current through LOAD4) | 0 | Bit 3 |
|  | Fault value for output OUT3 state: $0=$ LOAD3 is deactivated (there is no current through LOAD3); $1=$ LOAD3 is activated (there is current through LOAD3) | 0 | Bit 2 |
|  | Fault value for output OUT2 state: 0=LOAD2 is deactivated (there is no current through LOAD2); $1=$ LOAD2 is activated (there is current through LOAD2) | 0 | Bit 1 |
|  | Fault value for output OUT1 state: 0=LOAD1 is deactivated (there is no current through LOAD1); $1=$ LOAD1 is activated (there is current through LOAD1) | 0 | Bit 0 |

Fault state. If the interval time of RS485-bus communication failure is greater than Timeout/30 [sec], the outputs OUT1-OUT10 and LED1-10 have the bit40005.X configuration. If the module is connected to the RS485-bus for the first time, the outputs OUT1-OUT10 and LED1-10 have the bit40005. X configuration and the bits40005. X are overwritten to the bits40003. X , with $\mathrm{X}=0 ; 9$.

| Timeout | 0=timeout $\quad$ deactivated; between: $\quad 1 \quad(=1 / 30[\mathrm{sec}]) ;$ $60000(=2000[\mathrm{sec}])$ | Word | R/W |  | 40013 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Timeout [sec/30] (if reg. 40013 is different to 0: it is interval time of RS485-bus communication failure, after which the bit 40005. X is overwritten in the bit 40003. X , with $\mathrm{X}=0 ; 9$ ) |  |  | $\begin{aligned} & 150 \\ & (=5[\mathrm{sec}]) \end{aligned}$ |  |
| Reset Timer Timeout |  | Word | R/W |  | 40012 |
|  | These bits aren't used |  |  | 1 | Bit [15:10] |
|  | LED FAIL state to signal if there is a error (see reg.40002): 0b00=constant light; 0b01=slow blinking light; 0b10=quick blinking light; 0b11=double blinking light |  |  | Ob00 | Bit [9:8] |
|  | These bits aren't used |  |  | 1 | Bit [7:2] |
|  | Voltage Vext detection through LED FAIL. If bit 40012.1=0: LED FAIL is Vext-value indipendent. If bit40012.1=1: LED FAIL «off» means that Vext>VextTh; LED FAIL «on» means that Vext<VextTh (see bit40016.[7:0]) |  |  | 0 | Bit 1 |


|  | Timer reset type. The module has a timer: if the interval <br> time of RS485-bus communication failure is greater than <br> Timeout/30[sec], the module overwrites the content of <br> FaultOutputs (bits 40015.[0:9] to Outputs (bits <br> 40003.[0:9]). It's possible to reset this timer (the timer <br> returns to «Timeout/30[sec]» automatically) when one of <br> the following event occurs: 1) event=writing of an output <br> within Timeout/30[sec] (if bit 40012.0=1); 2) <br> event=sending of any command through RS485-bus within <br> Timeout/30[sec] (if bit 40012.0=0) | Bit 0 |
| :--- | :--- | :--- | :--- |

The «Input Status» registers used are shown in the following table:

| State OUT1 | 0-1 | Word | R |  | 10001 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Output OUT1 state: $0=$ LOAD1 is deactivated (there is no current through LOAD1); $1=$ LOAD1 is activated (there is current through LOAD1) |  |  | / |  |
| State OUT2 | 0-1 | Word | R |  | 10002 |
|  | Output OUT2 state: $0=$ LOAD2 is deactivated (there is no current through LOAD2); $1=$ LOAD2 is activated (there is current through LOAD2) |  |  | / |  |
| State OUT3 | 0-1 | Word | R |  | 10003 |
|  | Output OUT3 state: $0=$ LOAD3 is deactivated (there is no current through LOAD3); 1=LOAD3 is activated (there is current through LOAD3) |  |  | / |  |
| State OUT4 | 0-1 | Word | R |  | 10004 |
|  | Output OUT4 state: $0=$ LOAD4 is deactivated (there is no current through LOAD4); $1=$ LOAD4 is activated (there is current through LOAD4) |  |  | / |  |
| State OUT5 | 0-1 | Word | R |  | 10005 |
|  | Output OUT5 state: $0=$ LOAD5 is deactivated (there is no current through LOAD5); $1=$ LOAD5 is activated (there is current through LOAD5) |  |  | / |  |
| State OUT6 | 0-1 | Word | R |  | 10006 |
|  | Output OUT6 state: $0=$ LOAD6 is deactivated (there is no current through LOAD6); 1=LOAD6 is activated (there is current through LOAD6) |  |  | / |  |
| State OUT7 | 0-1 | Word | R |  | 10007 |
|  | Output OUT7 state: $0=$ LOAD7 is deactivated (there is no current through LOAD7); $1=$ LOAD7 is activated (there is current through LOAD7) |  |  | / |  |
| State OUT8 | 0-1 | Word | R |  | 10008 |
|  | Output OUT8 state: $0=$ LOAD8 is deactivated (there is no current through LOAD8); 1=LOAD8 is activated (there is current through LOAD8) |  |  | / |  |
| State OUT9 | 0-1 | Word | R |  | 10009 |
|  | Output OUT9 state: $0=$ LOAD9 is deactivated (there is no current through LOAD9); 1=LOAD9 is activated (there is current through LOAD9) |  |  | / |  |


| State OUT10 | $0-1$ | Word | $R$ |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Output OUT10 state: 0=LOAD10 is deactivated (there is <br> no current through LOAD10); 1=LOAD10 is activated <br> (there is current through LOAD10) | 10010 |  |  |

## LEDs for signalling

In the front-side panel there are 14 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| FAIL | Blinking light | The module has at least one of the errors/overflows described <br> in RS485 Registers table |
|  | Constant light | Module failure |
| RX | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
|  | Blinking light | The module sent a data packet |
|  | Constant light | Verify if the bus connection is corrected |
| C-10 Constant light <br>  No lightOUT1-10 state equal to «1» <br> OUT1-10 state equal to «0» (if the power is on and the outputs |  |  |

## Seneca Z-PC Line module: Z-D-IO

The Z-D-IO module acquires up to 6 single-ended digital signals (IN1...IN6) and controls up to 2 relay digital signals (OUT1 and OUT2). It also allows to perform three alternative functioning modalities: pneumatic valve command modality, motor control modality, motorized valve command modality.

## General characteristics

> It is possible to choose the Z-D-IO functioning modality by Dip-Switches
> Internal logic to control the motors, pneumatic valve, motorized valve
$>$ Configuration of the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
> It is possible to switch automatically RS485 to RS232 or vice versa

## Features

| INPUT | 6 |
| :--- | :--- |
| Number | REED, PROXIMITY PNP, NPN, contact, etc... |
| Type | This module provides inputs and power supply (Vaux) protection <br> against the overvoltage surge transient by transient suppressor <br> TVS (600W/ms) |
| Protection | The sensor is detected «closed» if: acquired signal voltage >12 <br> Vdc and acquired signal current > 3 mA. Minimum pulse width: <br> 20ms |
| Sensor=closed | The sensor is detected «open» if: acquired signal voltage <10 Vdc <br> and acquired signal current < 2 mA |
| Sensor=open | 2 |
| Discrimination limits | According to IEC1131.2 type 1 |
| Internal supply Vaux | The \#1 screw terminal: powers 24V with reference to a internal <br> ground (if J1 jumper is in "Int") |
| OUTPUT | Relays SPST (Single Pole Single Throw) normally open with <br> common contact |
| Number | Screw terminals 10,11: 2A AC1 with 250Vac |
| Type | 6 cycles/min(with resistive load); 1200 cycles/min(with no load) |
| Max current through <br> screw terminals | Max relay switching <br> frequency |
| Pick-up relay voltage | 18 V |
| Drop-out relay voltage | 2.4 V |
| No-load adsorbed <br> current by a relay | 9 mA |
| Relay response time | $5 / 2 \mathrm{~ms}$ |
| CONNECTIONS | IDC10 connector |
| RS485 interface | 1500 Vac isolations between: power supply, ModBUS RS485, input. <br> ISOLATIONS |



| POWER SUPPLY | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Supply voltage | $\mathrm{Max}: 2.5 \mathrm{~W}(@ 10 \mathrm{Vdc})$ |
| Power <br> consumption |  |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

## Functioning

## I/O MODALITY

I/O functioning modality allows to have 6 digital inputs and 2 relay digital outputs.

| FUNCTIONING MODALITY (Dip-Switches: SW2) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | Meaning |
|  |  |  | I/O modality | Default |
| INPUT |  |  |  |  |
| Screw <br> terminals | Meaning | Normally open |  |  |
| $4-1$ | Input 1 | Normally open |  |  |
| $5-1$ | Input 2 | Normally open |  |  |
| $6-1$ | Input 3 | Normally open |  |  |
| $7-1$ | Input 4 | Normally open |  |  |
| $8-1$ | Input 5 | Normally open |  |  |
| $9-1$ | Input 6 | Default |  |  |
| OUTPUT |  |  |  |  |
| Screw <br> terminals | Meaning | Normally no-excited |  |  |
| $10-12$ | Output 1 | Normally no-excited |  |  |
| $11-12$ | Output 2 |  |  |  |

To set Z-D-IO module it is necessary open the lateral panel of module case to modify Jumpers position.

In the following figure are shown the $\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3, \mathrm{~J} 4$ jumpers in default position: J 1 in "Int" position, J2 in "NO" position, J3 in "NO" position, J4 in "OPEN" position.


It is possible to connect the following type of sensors: REED, PROXIMITY PNP, NPN, contact, etc... To supply these inputs, a internal supply is available (if Jumper J1 is in "Int" position).

If jumper J 1 is in "Int" position, input screw terminals configuration is shown in the following figure.


If jumper J 1 is in "Ext" position, input screw terminals configuration is shown in the following figure. In this configuration, a external voltage supply is necessary.


To configure output1 and output2, set J2 and J3 jumpers.


## MOTOR CONTROL MODALITY

Before using Z-D-IO in motor control modality, set motor control delay (through reg. 40005 or Dip-Switches SW2-3 and SW2-4).

| FUNCTIONING MODALITY (Dip-Switches: SW2) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | Meaning |
| $\bullet$ |  |  | Motor command modality |  |
| INPUT |  |  |  |  |
| Screw <br> terminals | Meaning | Default |  |  |
| $4-1$ | Local/Remote | Normally open |  |  |
| $5-1$ | Start | Normally open |  |  |
| $6-1$ | Stop | Normally closed |  |  |
| $7-1$ | Thermal protection | Normally closed |  |  |
| $8-1$ | Feedback | Normally open |  |  |
| $9-1$ | Switch off alarm | Normally open |  |  |
| OUTPUT |  |  |  |  |
| Screw <br> terminals | Meaning | Default |  |  |
| $10-12$ | Alarm | Normally excited |  |  |
| $11-12$ | Start | Normally no-excited |  |  |



To start the motor, close "Start" input. Module controls the "Thermal protection" input and "Stop" input closing.

If "Thermal protection" input and "Stop" input are closed, Z-D-IO enables "Start" output. After motor command delay (see Dip-Switches SW2-3 and SW2-4 or reg.40005), closure of "Feedback" input is verified. If it is still open, "Alarm" output is enabled by module ("Start" output remains enabled).

If "Thermal protection" input opens during operation, "Alarm" output is enabled immediately, and "Start" output is disabled.

To switch off alarm, close "Switch off alarm" input.
To stop motor, open "Stop" input: the module disables "Start" output.
The "Feedback" input must open within motor command delay, otherwise the module enables "Alarm" output.

## PNEUMATIC VALVE COMMAND MODALITY

Before using Z-D-IO in pneumatic valve command modality, set pneumatic valve delay (through reg. 40006 or Dip-Switches SW2-3 and SW2-4).

| FUNCTIONING MODALITY (Dip-Switches: SW2) |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | Meaning |  |
|  | $\bullet$ |  | Pneumatic valve command modality | Default |  |
| INPUT | Screw <br> terminals |  |  | Meaning | Normally open |
| $4-1$ | Local/Remote | Normally open |  |  |  |
| $5-1$ | Activation | Normally closed |  |  |  |
| $6-1$ | Return | Closed in position |  |  |  |
| $7-1$ | Return travel-limit | Closed in position |  |  |  |
| $8-1$ | Activation travel-limit | $/$ |  |  |  |
| $9-1$ | \#9 Screw terminal isn't used | Default |  |  |  |
| OUTPUT |  |  |  |  |  |
| Screw <br> terminals | Meaning | Normally excited |  |  |  |
| $10-12$ | Alarm | Normally no-excited |  |  |  |
| $11-12$ | Activation |  |  |  |  |



To enable the pneumatic valve, close "Activation" input. Module controls the "Return" input closing.

If "Return" input is closed, Z-D-IO enables "Activation" output. After pneumatic valve command delay (see Dip-Switches SW2-3 and SW2-4 or reg.40006), opening of "Activation travel-limit" input is verified. If it is still closed, "Alarm" output is enabled by module ("Activation" output remains enabled).

To switch off alarm, close "Switch off alarm" input.
If you open "Return" input, Z-D-IO disables "Activation" output.
"Return travel-limit" input must open within pneumatic valve command delay, otherwise the module enables "Alarm" output.

If "Activation travel-limit" and "Return travel-limit" inputs are opened at the same time, "Alarm" output is activated and LED FAIL is on.

## MOTORIZED VALVE COMMAND MODALITY

Before using Z-D-IO in pneumatic valve command modality, set motorized valve delay (through reg. 40007 or Dip-Switches SW2-3 and SW2-4).

| FUNCTIONING MODALITY (Dip-Switches: SW2) |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | Meaning |  |
| $\bullet$ | $\bullet$ |  | Motorized command valve command modality |  |  |
| INPUT |  |  |  |  |  |
| Screw <br> terminals | Meaning | Default |  |  |  |
| $4-1$ | Local/Remote | Normally open |  |  |  |
| $5-1$ | Activation | Normally open |  |  |  |
| $6-1$ | Return | Normally closed |  |  |  |
| $7-1$ | Return travel-limit | Closed in position |  |  |  |
| $8-1$ | Activation travel-limit | Closed in position |  |  |  |
| $9-1$ | \#9 Screw terminal isn't used | $/$ |  |  |  |
| OUTPUT |  |  |  |  |  |
| Screw <br> terminals | Meaning | Default |  |  |  |
| $10-12$ | Return | Normally no-excited |  |  |  |
| $11-12$ | Activation | Normally no-excited |  |  |  |



To enable the motorized valve, close "Activation" input. Module controls the "Return" input closing.

If "Return" input is closed, Z-D-IO disables "Return" output (if it was enabled) and enables "Activation" output. After motorized valve command delay (see Dip-Switches SW2-3 and SW2-4 or reg.40007), opening of "Activation travel-limit" input is verified. If it is still closed, "Activation" output is disabled and LED FAIL in on.

If you open "Return" input, Z-D-IO disables "Activation" output (if it was enabled) and enables "Return" output.

After motorized valve command delay, opening of "Return travel-limit is verified" (if it is closed), module enables the alarm.

If "Activation travel-limit" and "Return travel-limit" inputs are opened at the same time, LED FAIL is on.

## Dip-switches table

In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

In the following tables: to change jumper status, it is necessary to open lateral panel because $\mathrm{J} 1, \mathrm{~J} 2$, J3, J4 jumpers are placed into the module.

| BAUD-RATE (Dip-Switches: SW1) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | Meaning |  |  |  |  |
|  |  | Baud-rate=9600 Baud |  |  |  |  |
|  | $\bullet$ | Baud-rate=19200 Baud |  |  |  |  |
| $\bullet$ |  | Baud-rate=38400 Baud |  |  |  |  |
| $\bullet$ | $\bullet$ | Baud-rate=57600 Baud |  |  |  |  |
| ADDRESS (Dip-Switches: SW1) |  |  |  |  |  |  |
| 3 | 4 | 5 | 6 | 7 | 8 | Meaning |
|  |  |  |  |  |  | Address and |
|  |  |  |  |  | - | Address=1 |
|  |  |  |  | $\bullet$ |  | Address=2 |
|  |  |  |  | $\bullet$ | - | Address=3 |
|  |  |  | - |  |  | Address=4 |
| X | X | X | X | X | X | ................ |
| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | Address=63 |

RS485 TERMINATOR (J4 JUMPER)

| Open | Closed | Meaning |
| :---: | :---: | :--- |
| $\bullet$ |  | RS485 terminator disabled |
|  | $\bullet$ | RS485 terminator enabled |

FUNCTIONING MODALITY (Dip-Switches: SW2)

| 1 | 2 | 3 | 4 | Meaning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | I/O modality |  |  |  |
|  | $\bullet$ |  |  | Pneumatic valve modality |  |  |  |
| $\bullet$ |  |  |  | Motor command modality |  |  |  |
| $\bullet$ | $\bullet$ |  |  | Motorized valve command modality |  |  |  |
| ALARM DELAY (Dip-Switches: SW2) |  |  |  |  |  |  |  |
| 1 | 2 | 3 | 4 | Meaning | Motor command modality | Pneumatic valve modality | Motorized valve comm. modality |
|  |  |  |  | Delay is acquired from EEPROM memory | See reg. 40005 | See reg. 40006 | See reg. 40007 |
|  |  |  | $\bullet$ | Short alarm delay | 2 sec | 4 sec | 15 sec |
|  |  | $\bullet$ |  | Average alarm delay | 5 sec | 30 sec | 120 sec |
|  |  | $\bullet$ | $\bullet$ | Long alarm delay | 30 sec | 120 sec | 300 sec |


| INTERNAL SUPPLY VAUX: screw terminal 1 (J1 JUMPER) |  |  |  |
| :--- | :---: | :--- | :---: |
| Int | Ext | Meaning |  |
| $\bullet$ |  | Internal supply Vaux enabled (to power digital inputs) |  |
|  | $\bullet$ | Internal supply Vaux disabled ( to power digital inputs, use a external voltage Vext) |  |


| OUT1 TYPE: screw terminals 10-12 (J2 JUMPER) |  |  |
| :---: | :---: | :--- |
| NO | NC | Meaning |
| $\bullet$ |  | OUT1 is normally open |
|  | $\bullet$ | OUT1 is normally closed |

OUT2 TYPE: screw terminals 11-12 (J3 JUMPER)

| NO | NC | Meaning |
| :---: | :---: | :--- |
| $\bullet$ |  | OUT2 is normally open |
|  | $\bullet$ | OUT2 is normally closed |

## RS485 Register table

D -3 The function codes supported by Z-D-IO are shown in the following table.

| Functional <br> code | First register <br> address | Name | Functional <br> code | Name |
| :--- | :--- | :--- | :--- | :--- |
| 01 | 00001 | Read Coil Status | 05 | Force Single Coil |
| 02 | 10001 | Read Input Status | 06 | Preset Single Register |
| 03 | 40001 | Read Holding Register | 15 | Write Multiple Coils |
| 04 | 30001 | Read Input Register | 16 | Write Multiple Registers |


| Name | Range $\quad$Interpretation of <br> register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: |
| MachinelD | / | R |  | 40001 |
|  | Id_Code (Module ID) |  | 0x10 | Bit [15:8] |
|  | Ext_Rev (Module version) |  |  | Bit [7:0] |
| Dip Switches status | / ${ }^{\text {a }}$ | R |  | 40003 |
|  | Switch1 of "SW2" state. Bit40003.15=0 corresponds to Switch1="0", bit40003.15=1 corresponds to Switch1="1" |  | / | Bit 15 |
|  | Switch2 of "SW2" state. Bit40003.14=0 corresponds to Switch2="0", bit40003.15=1 corresponds to Switch2="1" |  | / | Bit 14 |
|  | Switch3 of "SW2" state. Bit40003.13=0 corresponds to Switch3="0", bit40003.13=1 corresponds to Switch3="1" |  | 1 | Bit 13 |
|  | Switch4 of "SW2" state. Bit40003.12=0 corresponds to Switch4="0", bit40003.12=1 corresponds to Switch4="1" |  | / | Bit 12 |
|  | These bits aren't used |  | 1 | Bit [11:8] |
|  | Switch1 of "SW1" state. Bit40003.7=0 corresponds to Switch1="0", bit40003.7=1 corresponds to Switch1="1" |  | 1 | Bit 7 |
|  | Switch2 of "SW1" state. Bit40003.6=0 corresponds to Switch2="0", bit40003.6=1 corresponds to Switch2="1" |  | 1 | Bit 6 |
|  | Switch3 of "SW1" state. Bit40003.5=0 corresponds to Switch3="0", bit40003.5=1 corresponds to Switch3="1" |  | / | Bit 5 |
|  | Switch4 of "SW1" state. Bit40003.4=0 corresponds to Switch4="0", bit40003.4=1 corresponds to Switch4="1" |  | / | Bit 4 |
|  | Switch5 of "SW1" state. Bit40003.3=0 corresponds to Switch5="0", bit40003.3=1 corresponds to Switch5="1" |  | / | Bit 3 |
|  | Switch6 of "SW1" state. Bit40003.2=0 corresponds to Switch6="0", bit40003.2=1 corresponds to Switch6="1" |  | / | Bit 2 |


|  | Switch7 of "SW1" state. Bit40003.1=0 corresponds to Switch7="0", bit40003.1=1 corresponds to Switch7="1" |  |  | / | Bit 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Switch8 of "SW1" state. Bit40003.0=0 corresponds to Switch8="0", bit40003.0=1 corresponds to Switch8="1" |  |  | / | Bit 0 |
| Address Parity | 1 | MSB, LSB | R/W |  | 40008 |
|  | Address for RS485 (address of module/node if parameters are configurated by memory modality): from $0 \times 01=1$ to 0xFF=255 |  |  | 1 | Bit [15:8] |
|  | Parity for RS485: 0=there isn't; 1=even; 2=odd |  |  | 0 | Bit [7:0] |
| Baudrate Delay | / | MSB, LSB | R/W |  | 40009 |
|  | Baud-rate for RS485 (baud-rate of module/node if parameters are configurated by memory modality):$\begin{array}{lll} 0=4800 ; \quad 1=9600 ; \quad 2=19200 ; & 3=38400 ; \quad 4=57600 ; \\ 5=115200 ; & 6=1200 ; 7=2400 & \\ \end{array}$ |  |  | 38400 | Bit [15:8] |
|  | Delay for RS485 (delay of communication response: it represents the number of the pauses(*) between the end of Rx message and the start of Tx message): from $0 \times 00=0$ to $0 x F F=255$ <br> (*) 1 pause $=6$ characters |  |  | 0 | Bit [7:0] |
| IN and OUT | / | Bit | R/W |  | 40002 |
|  | Input1 state (if I/O modality): $0=$ open; $1=$ closed Local/remote state (if motor control modality, motorized valve command modality, pneumatic valve command modality): 0=local control; 1=remote control |  |  | See note below | Bit 15 |
|  | Input2 state (if I/O modality): $0=$ open; $1=$ closed Start state (if motor control modality): $0=0$ open; $1=$ closed Activation state (if motorized valve command modality, pneumatic valve command modality): $0=$ open; $1=$ closed |  |  | See note below | Bit 14 |
|  | Input3 state (if I/O modality): $0=$ open; $1=$ closed Stop state (if motor control modality): $0=o p e n ; 1=c l o s e d$ Return state (if motorized valve command modality, pneumatic valve command modality): $0=$ open; $1=$ closed |  |  | See note below | Bit 13 |
|  | Input4 state (if I/O modality): $0=$ open; $1=$ closed <br> Thermal protection state (if motor control modality): $0=$ open; $1=$ closed <br> Return travel-limit state (if motorized valve command modality, pneumatic valve command modality): $0=0$ pen; $1=$ closed |  |  | See note below | Bit 12 |
|  | Input5 state (if I/O modality): $0=$ open; $1=$ closed Feedback (if motor control modality): $0=$ open; $1=$ closed Activation travel-limit (if motorized valve command modality, pneumatic valve command modality): $0=0$ pen; 1=closed |  |  | See note below | Bit 11 |
|  | Input6 state (if I/O modality): 0=open; 1=closed Switch off alarm state (if motor control modality, motorized valve command modality, pneumatic valve command modality): 0=open; $1=$ closed |  |  | See note below | Bit 10 |
|  | These bits aren't used |  |  | 1 | Bit 9 |
|  | Alarm: 0=there isn't; 1 =there is |  |  | See note below | Bit 8 |
|  | Alarm output state (if motor control modality, pneumatic valve command modality): $0=$ deactivated; $1=$ activated Return output state (if motorized valve command modality): $0=$ deactivated; $1=$ activated |  |  | See note below | Bit 7 |
|  | Start output state (if motor control modality): $0=$ deactivated; 1=activated <br> Activation output state (if motorized valve command modality, pneumatic valve command modality): $0=$ deactivated; 1=activated |  |  | See note below | Bit 6 |


|  | These bits aren't used | $/$ | Bit [5:2] |
| :--- | :--- | :--- | :--- |
|  | Output1 state (if I/O modality): $0=$ OFF; $1=\mathrm{ON}$ <br> Alarm (if motor command modality, pneumatic valve <br> command modality) <br> Return (if motorized valve command modality) | $/$ | Bit 1 |
|  | Output2 state (if I/O modality): $0=$ OFF; $1=\mathrm{ON}$ <br> Alarm (if motor command modality) <br> Return (if motorized valve command modality, pneumatic <br> valve command modality) | $/$ | Bit 0 |

To know default values, see "Functioning" for selected functioning modality.

| IN and OUT state | Bit $\quad$ R |  | 40014 |
| :---: | :---: | :---: | :---: |
|  | Input1 state (if I/O modality): $0=0$ open; 1=closed Local/remote state (if motor control modality, motorized valve command modality, pneumatic valve command modality): $0=$ local control; $1=$ remote control | See note below | Bit 15 |
|  | Input2 state (if I/O modality): $0=$ open; $1=$ closed Start state (if motor control modality): 0=open; $1=$ closed Activation state (if motorized valve command modality, pneumatic valve command modality): $0=0$ pen; $1=$ closed | See note below | Bit 14 |
|  | Input3 state (if I/O modality): 0=open; 1=closed Stop state (if motor control modality): $0=o p e n ; 1=c l o s e d$ Return state (if motorized valve command modality, pneumatic valve command modality): $0=$ open; $1=$ closed | See note below | Bit 13 |
|  | Input4 state (if I/O modality): $0=0$ pen; $1=$ closed <br> Thermal protection state (if motor control modality): $0=$ open; $1=$ closed <br> Return travel-limit state (if motorized valve command modality, pneumatic valve command modality): $0=0$ pen; 1=closed | See note below | Bit 12 |
|  | Input5 state (if I/O modality): $0=$ open; $1=$ closed Feedback (if motor control modality): $0=o p e n ; 1=c l o s e d$ Activation travel-limit (if motorized valve command modality, pneumatic valve command modality): $0=0$ pen; 1=closed | See note below | Bit 11 |
|  | Input6 state (if I/O modality): 0=open; 1=closed Switch off alarm state (if motor control modality, motorized valve command modality, pneumatic valve command modality): 0=open; $1=$ closed | See note below | Bit 10 |
|  | These bits aren't used | / | Bit 9 |
|  | Alarm: 0=there isn't; 1 =there is | See note below | Bit 8 |
|  | Output1 state (if I/O modality): $0=$ OFF; $1=\mathrm{ON}$ <br> Alarm output state (if motor control modality, pneumatic valve command modality): $0=\mathrm{OFF} ; 1=\mathrm{ON}$ <br> Return output state (if motorized valve command modality): $0=$ OFF; $1=O \mathrm{~N}$ | See note below | Bit 7 |
|  | Output2 state (if I/O modality) <br> Start output state (if motor control modality): 0=OFF; $1=\mathrm{ON}$ <br> Activation output state (if motorized valve command modality, pneumatic valve command modality): $0=0 \mathrm{FF}$; $1=\mathrm{ON}$ | See note below | Bit 6 |
|  | These bits aren't used | / | Bit [5:0] |

To know default values, see "Functioning" for selected functioning modality.


To know default values, see "Functioning" for selected functioning modality.


The «Input Status»-type registers used for Z-D-IO module are shown in the following table:

| Name | Range | Interpretation of register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IN1 state | 0-1 | Word | R |  | 10001 |
|  | Input1 state (if I/O modality): 0=open; 1=closed Local/remote state (if motor control modality, motorized valve command modality, pneumatic valve command modality): $0=$ local control; $1=$ remote control |  |  | / |  |
| IN2 state | 0-1 | Word | R |  | 10002 |
|  | Input2 state (if I/O modality): 0=open; 1=closed Start state (if motor control modality): 0=open; $1=$ closed Activation state (if motorized valve command modality, pneumatic valve command modality): $0=$ open; $1=$ closed |  |  | / |  |
| IN3 state | 0-1 | Word | R |  | 10003 |
|  | Input3 state (if I/O modality): $0=$ open; $1=$ closed Stop state (if motor control modality): 0=open; 1=closed Return state (if motorized valve command modality, pneumatic valve command modality): $0=0$ pen; $1=$ closed |  |  | / |  |


| IN4 state | 0-1 | Word | R |  | 10004 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Input4 state (if l/O modality): $0=$ open; $1=$ closed <br> Thermal protection state (if motor control modality): $0=$ open; $1=$ closed <br> Return travel-limit state (if motorized valve command modality, pneumatic valve command modality): $0=0$ en; 1=closed |  |  | / |  |
| IN5 state | 0-1 | Word | R |  | 10005 |
|  | Input5 state (if I/O modality): $0=0$ open; $1=$ closed Feedback (if motor control modality): $0=$ open; $1=$ closed Activation travel-limit (if motorized valve command modality, pneumatic valve command modality): $0=o p e n ;$ 1=closed |  |  | / |  |
| IN6 state | 0-1 | Word | R |  | 10006 |
|  | Input6 state (if I/O modality): 0=open; 1=closed Switch off alarm state (if motor control modality, motorized valve command modality, pneumatic valve command modality): $0=$ open; $1=$ closed |  |  | / |  |
| Alarm | 0-1 | Word | R | / | 10008 |
|  | Alarm: $0=$ there isn't; $1=$ there is |  |  | / |  |
| OUT1 state | 0-1 | Word | R |  | 10009 |
|  | Output1 state (if I/O modality) : 0=OFF; 1=ON <br> Alarm output state (if motor control modality, pneumatic valve command modality): $0=$ OFF; $1=O \mathrm{~N}$ <br> Return output state (if motorized valve command modality): $0=O F F ; 1=O N$ |  |  | / |  |
| OUT2 state | 0-1 | Word | R |  | 10010 |
|  | Output2 state (if I/O modality): 0=OFF; 1=ON <br> Start output state (if motor control modality): 0=OFF; $1=\mathrm{ON}$ <br> Activation output state (if motorized valve command modality, pneumatic valve command modality): 0=OFF; 1=ON |  |  | / |  |

The «Coil Status»-type registers used for Z-D-IO module are shown in the following table:


## LEDs for signalling

In the front-side panel there are 12 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| ERR | Blinking light | The module has at least one of the errors described in RS485 <br> Registers table |
|  | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
| TX | Blinking light | The module sent a data packet |
|  | Constant light | IN1-6 state equal to « $1 »$ |
|  | No light | IN1-6 state equal to «0» (if the power is on) |
|  | Constant light | OUT1-2 state equal to «1» |
|  | No light | OUT1-2 state equal to «0» (if the power is on) |

## Seneca Z-PC Line module: ZC-24DI

The ZC-24DI module acquires 24 single-ended digital signals, it converts them to a digital format (IN 1-24 state) and it counts the input-pulse number (pulse counter for IN 1-8).

## General characteristics

$>$ Acquisition of digital signals from sensor: reed, NPN, PNP, proximity, contact, etc...
$>$ Configuration of a filter applied to input signals IN1-IN8 (noise filter) to attenuate the noise overlapped to the digital signals
> Pulse counters for digital signals IN1-IN8, with max frequency equal to 10 kHz , 32bit-registers
$>$ Advanced management of the pulse counters for digital signals IN1-IN8 (for each pulse counter: overflow, preset value and reset/preset command are available)
> Power of 24 sensors using internal supply voltage (Vaux=16V)
$>$ It is possible to configure the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
$>$ It is possible to switch automatically RS485 to RS232 or vice versa
> CAN interface with CANOpen protocol: max 1 Mbps

## Features

| INPUT | 24 |  |  |
| :--- | :--- | :---: | :---: |
| Number | Polarity (EN 61131-2 type 2): sink (pnp) |  |  |
| Type | Configurable between: 16 Hz and 2.1 kHz |  |  |
| Equivalent low-pass- <br> filter cut-off frequency | $250 \mu \mathrm{~s}$ |  |  |
| Pulse min duration <br> (ton) | The sensor is detected «off» if: acquired signal voltage between <br> 0Vdc and 7 Vdc |  |  |
| Sensor=off <br> (input threshold) | The sensor is detected «on» if: acquired signal voltage between <br> 11Vdc and 30Vdc |  |  |
| Sensor=on <br> (input threshold) | Typical: 1.2ms; max: 3ms |  |  |
| Switching delay | 3mA (for each input) |  |  |
| Adsorbed current | The screw terminals 24-32 (Vaux) supply 16 V with reference to <br> the screw terminal 7-15-23-31 (GND) |  |  |
| Internal supply Vaux |  |  |  |
|  |  |  |  |
| CONNECTIONS | IDC10 connector for DIN 46277 rail (back-side panel) |  |  |
| RS485 interface | Between: power supply, ModBUS RS485, digital inputs |  |  |



POWER SUPPLY

| Supply voltage | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Power <br> consumption | Typical: $1.5 \mathrm{~W} ; \mathrm{Max}: 2.5 \mathrm{~W}$ |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

| MODULE CASE | PBT, black |
| :--- | :--- |
| Case-type | Width $\mathrm{W}=100 \mathrm{~mm}$, Height $\mathrm{H}=112 \mathrm{~mm}$, Depth D = 35 mm |
| Dimensions | Removable 4-way screw terminals: <br> pitch 3.5mm, sections 2.5mm |
| Terminal board | IP20 (International Protection) |
| Protection class |  |

## Input connections

Power on the module with < 40 Vdc or < 28 Vac voltage supply. These upper limits must not be exceeded to avoid serious damage to the module.

In the following figures are shown the connection of the sensors to the 24 inputs of ZC-24DI module. It's possible to connect to the module the sensors: Reed, NPN, PNP, Proximity, contact, etc... To power these sensors, connect each of them between the screw terminal 24 or 32 (Vaux $=16 \mathrm{~V}$ with reference to the screw terminal 7, 15, 23 or31 =GND) and one of the inputs IN1-24.


## NORMAL DIGITAL INPUTS



Vaux* ( supplied from module ) = 16 Vdc

## Dip-switches table

Power off the module before configuring it by Dip-Switches to avoid serious damage due to electrostatic discharges.

D -3 In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

| BAUD-RATE (Dip-Switches: SW1) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | Meaning |  |  |  |  |
|  |  |  | Only Baud-Rate is acquired from memory(EEPROM) |  |  |  |  |
|  |  | $\bullet$ | Baudrate=2400 |  |  |  |  |
|  | $\bullet$ |  | Baudrate=4800 |  |  |  |  |
|  | $\bullet$ | - | Baudrate=9600 |  |  |  |  |
| $\bullet$ |  |  | Baudrate=19200 |  |  |  |  |
| $\bullet$ |  | $\bullet$ | Baudrate=38400 |  |  |  |  |
| $\bullet$ | $\bullet$ |  | Baudrate=57600 |  |  |  |  |
| $\bullet$ | $\bullet$ | $\bullet$ | Baudrate=115200 |  |  |  |  |
| ADDRESS (Dip-Switches: SW1) |  |  |  |  |  |  |  |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 | Meaning |
|  |  |  |  |  |  |  | Only addres |
|  |  |  |  |  |  | - | Address=1 |
|  |  |  |  |  | $\bullet$ |  | Address=2 |
|  |  |  |  |  | $\bullet$ | - | Address=3 |
|  |  |  |  | $\bullet$ |  |  | Address=4 |
|  |  |  |  | $\bullet$ |  | - | Address=5 |
| X | X | X | X | X | X | X | ............. |
| $\bullet$ | - | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | Address=127 |
| RS485 TERMINATOR (Dip-Switches: SW3) |  |  |  |  |  |  |  |
| 1 Meaning |  |  |  |  |  |  |  |
| RS485 terminator disabled |  |  |  |  |  |  |  |
| - RS485 terminator enabled |  |  |  |  |  |  |  |
| COMMUNICATION PROTOCOL (Dip-Switch: SW2 and SW4) |  |  |  |  |  |  |  |
| SW2 |  | SW |  |  |  |  |  |
| 1 |  | 1 |  |  |  |  |  |
|  |  |  |  | Prot | col | Mo | BUS |
| $\bullet$ |  | $\bullet$ |  | Prot | col | CA | VOPEN |

## RS485 Register table

| Name | Range | Interpretation of register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MyType | 1 | MSB, LSB | R |  | 40001 |
|  | Id_Code (Module ID) |  |  | $\begin{array}{ll} \hline 0 \times 20 \quad(32 \\ \text { decimal) } \\ \hline \end{array}$ | Bit [15:8] |
|  | Ext_Rev (Module version) |  |  |  | Bit [7:0] |
| FWREV | / | Word | R |  | 40002 |
|  | Firmware Code |  |  |  |  |
| Errors | 1 | Bit | R |  | 40006 |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | Memory error (EEPROM): 0=there isn't; 1 =there is |  |  | 1 | Bit 7 |
|  | These bits aren't used |  |  | 1 | Bit [6:4] |
|  | Over-temperature error: $0=$ there isn't; 1 =there is |  |  | 1 | Bit 3 |
|  | These bits aren't used |  |  | 1 | Bit [2:0] |


| Command | 1 | Word | R/W |  | 40201 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Reg.40201=0x5Cnn (preset counter values are loaded into pulse counters, using a bit interpretation to mask the inputs): load 40030,40031 .. 40044,40045 into 40008, 40009...40022,40023. <br> Examples: <br> $0 \times 5 \mathrm{C} 01$ allows to load PresetCounter1 into PulseCounter1 <br> $0 \times 5 \mathrm{C} 02$ allows to load PresetCounter2 into PulseCounter2 <br> $0 \times 5 \mathrm{C} 03$ allows to load PresetCounter1 into PulseCounter1 and PresetCounter2 into PulseCounter2 (not PresetCounter3 into PulseCounter3) and so on <br> 0x5CFF allows to load every PresetCounter into corresponding PulseCounter |  |  |  |  |  |
| Reg.40201=0x5Dnn (pulse counters value are loaded with zero values, using a bit interpretation to mask the inputs) <br> Examples: <br> 0x5D01 allows to load PulseCounter1 with zero value $0 \times 5 \mathrm{D} 02$ allows to load PulseCounter2 with zero value <br> $0 \times 5 \mathrm{D} 03$ allows to load PulseCounter1 and PresetCounter2 with zero value (not PresetCounter3 with zero value) and so on <br> Ox5DFF allows to load every PulseCounter with zero value |  |  |  |  |  |
| Reg.40201=0x5Enn (counter overflows reset, using a bit interpretation to mask the inputs) Examples: <br> 0x5E01 allows to reset PulseCounter1 overflow <br> $0 \times 5 \mathrm{E} 02$ allows to reset PulseCounter2 overflow <br> $0 \times 5 \mathrm{E} 03$ allows to reset PulseCounter2 overflow and to reset PulseCounter2 overflow (not to rese PulseCounter3 overflow) and so on <br> $0 \times 5 E F F$ allows to reset every PulseCounter overflow |  |  |  |  |  |
| Reg.40201=0x6BAC (the module writes the Dip-Switches-state in reg.40202) |  |  |  |  |  |
| Reg.40201=0xBCD0 (save data in EEPROM memory) |  |  |  |  |  |
| Reg.40201=0xC1A0 (module reset) |  |  |  |  |  |
| Command aux |  | Bit | R |  | 40202 |
|  | These bits aren't used |  |  | , | Bit [15:10] |
|  | Dip-Switches "SW1 [4:10]" state. They correspond to the module baud-rate |  |  | / | Bit [9:3] |
|  | Dip-Switches "SW1 [1:3]" state. They correspond to the module address |  |  | / | Bit [2:0] |
| $\begin{aligned} & \text { Filter [IN1-8] } \\ & \text { masked } \end{aligned}$ | 1 | Word | R/W |  | 40024 |
|  | These bits aren't used |  |  | / | Bit [15:8] |
|  | Filter activation for inputs IN1-IN8 using a bit interpretation to mask the inputs |  |  | 0xFF | Bit [7:0] |
| $\begin{aligned} & \text { Filter [IN9-16] } \\ & \text { masked } \end{aligned}$ | 1 | Word | R/W |  | 40025 |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | Filter activation for inputs IN9-IN16 using a bit interpretation to mask the inputs |  |  | 0xFF | Bit [7:0] |
| Filter [IN17-24] masked | 1 | Word | R/W |  | 40026 |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  |  | IN17-I | a bit | 0xFF | Bit [7:0] |

$10-{ }^{-1}$
Examples (with reference to reg.40024; at the same way, these examples can be applied to reg. 40025 and reg.40026):

0x01 allows to activate filter on IN1
0x02 allows to activate filter on IN2
0x03 allows to activate filter on IN1 and to activate filter on IN2 (not to activate filter on IN3) and so on

0xFF allows to activate filter on IN1...IN8

| Filter Number | From 0 to 255 | Word | R/W |  | 40027 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | These bits aren't used |  |  |  | Bit [15:8] |
|  | Number of samples for filter |  |  | $\begin{array}{ll} \hline 0 \times 28 \quad(40 \\ \text { decimal) } \end{array}$ | Bit [7:0] |
| Filter Sup | From 0 to 255 | Word | R/W |  | 40028 |
|  | These bits aren't used |  |  |  | Bit [15:8] |
|  | Inferior threshold for filter |  |  | $0 \times 14 \quad(20$ decimal) | Bit [7:0] |
| Filter Inf | From 0 to 255 | Word | R/W |  | 40029 |
|  | These bits aren't used |  |  |  | Bit [15:8] |
|  | Superior threshold for filter |  |  | $0 \times 14 \quad(20$ decimal) | Bit [7:0] |

Default equivalent filter value is 100 Hz (cut-off frequency).

## Filter functioning

Input filter operates in the following way: the ZC-24DI module samples the digital input with a frequency equal to 20 kHz , and some samples are obtained (in the following figure there are 9 samples).


If counter of samples is greater than (or equal to) reg. 40028 (Filter Sup), input signal is detected as " 1 ".

If counter of samples is less than (or equal to) reg. 40029 (Filter Inf), input signal is detected as " 0 ".

If counter of samples is between reg. 40029 (Filter Inf) and reg. 40028 (Filter Sup), filter value is kept stored at the previous value.

Example: with reference to the previous figure
A) Counter of samples (for superior figure) $=0+1+1+1-1-1-1+1+1-1=\mathbf{1}$

If Filter $\operatorname{Inf}=2$, Filter Sup=4: $1 \geq 4$ is false, $1<2$ is true. So input is detected as "0"
B) Counter of samples (for inferior figure) $=0+1+1+1+1-1-1+1+1+1=5$

If Filter $\operatorname{Inf}=2$, Filter $\operatorname{Sup}=4: 5 \geq 4$ is true, $5<2$ is false. So input is detected as " 1 "


To deactivate the filter, write: reg.40027=0x01, reg.40028=0x00, reg.40029=0x00.

This filter action is described in configuration software as a low pass digital filter, with cut-off frequency from 16 Hz to 2.1 kHz .

| Address Parity | Address: from $0 \times 01=1$ to 0xFF=255 | MSB, LSB | R/W |  | 40048 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Address for RS485 (address of module/node if parameters are configurated by memory modality) |  |  | 1 | Bit [15:8] |
|  | Parity for RS485: 0=no parity; 1=even; 2=odd |  |  | 0 | Bit [7:0] |
| Baudrate Delay | Delay: from $0 \times 00=0$ to $0 \times F F=255$ | MSB, LSB | R/W |  | 40049 |
|  | Baud-rate for RS485 (baud-rate of module/node if parameters are configurated by memory modality):$\begin{aligned} & 1=2400 ; 2=4800 ; 3=9600 ; 4=19200 ; 5=38400 ; 6=57600 ; \\ & 7=115200 \end{aligned}$ |  |  | 38400 | Bit [15:8] |
|  | Delay for RS485 (delay of communication response: pauses between the end of $R x$ message and the start of Tx message) |  |  | 0 | Bit [7:0] |
| State IN1-IN8 |  | Bit | R |  | 40003 |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | IN8 state: 0=S8 open; 1=S8 closed |  |  | 1 | Bit 7 |
|  | IN7 state: 0=S7 open; 1=S7 closed |  |  | / | Bit 6 |
|  | IN6 state: 0=S6 open; 1=S6 closed |  |  | 1 | Bit 5 |
|  | IN5 state: $0=$ S5 open; 1=S5 closed |  |  | 1 | Bit 4 |
|  | IN4 state: 0=S4 open; 1=S4 closed |  |  |  | Bit 3 |
|  | IN3 state: $0=$ S3 open; $1=$ S3 closed |  |  | 1 | Bit 2 |


|  | IN2 state: 0=S2 open; 1=S2 closed |  | 1 | Bit 1 |
| :---: | :---: | :---: | :---: | :---: |
|  | IN1 state: $0=$ S1 open; $1=$ S1 closed |  | 1 | Bit 0 |
| State IN9-IN16 | Bit | R |  | 40004 |
|  | These bits aren't used |  | 1 | Bit [15:8] |
|  | IN16 state: 0=S16 open; $1=$ S 16 closed |  | 1 | Bit 7 |
|  | IN15 state: $0=$ S15 open; $1=$ S15 closed |  | 1 | Bit 6 |
|  | IN14 state: $0=$ S14 open; $1=$ S14 closed |  | 1 | Bit 5 |
|  | IN13 state: $0=$ S13 open; $1=$ S 13 closed |  | 1 | Bit 4 |
|  | IN12 state: $0=$ S12 open; $1=$ S 12 closed |  | 1 | Bit 3 |
|  | IN11 state: $0=$ S11 open; $1=$ S11 closed |  | 1 | Bit 2 |
|  | IN10 state: $0=$ S 10 open; $1=$ S 10 closed |  | 1 | Bit 1 |
|  | IN9 state: $0=$ S9 open; $1=$ S 9 closed |  | 1 | Bit 0 |
| State IN17- IN24 | Bit | R |  | 40005 |
|  | These bits aren't used |  | 1 | Bit [15:8] |
|  | IN24 state: 0=S24 open; $1=$ S24 closed |  | 1 | Bit 7 |
|  | IN23 state: $0=$ S23 open; $1=$ S23 closed |  | 1 | Bit 6 |
|  | IN22 state: $0=$ S22 open; $1=$ S22 closed |  | 1 | Bit 5 |
|  | IN21 state: $0=$ S21 open; $1=$ S21 closed |  | 1 | Bit 4 |
|  | IN20 state: 0=S20 open; 1=S20 closed |  | 1 | Bit 3 |
|  | IN17 state: $0=$ S19 open; $1=$ S19 closed |  | 1 | Bit 2 |
|  | IN18 state: $0=$ S18 open; $1=$ S18 closed |  | 1 | Bit 1 |
|  | IN17 state: $0=$ S17 open; $1=$ S17 closed |  | 1 | Bit 0 |
| State IN1-IN16 | Bit | R |  | 40301 |
|  | IN16 state: $0=$ S16 open; $1=$ S16 closed |  | 1 | Bit 15 |
|  | IN15 state: $0=$ S 15 open; $1=$ S 15 closed |  | 1 | Bit 14 |
|  | IN14 state: $0=$ S14 open; $1=$ S 14 closed |  | 1 | Bit 13 |
|  | IN13 state: $0=$ S13 open; $1=$ S13 closed |  | 1 | Bit 12 |
|  | IN12 state: $0=$ S12 open; $1=$ S12 closed |  | 1 | Bit 11 |
|  | IN11 state: $0=$ S11 open; $1=$ S11 closed |  | 1 | Bit 10 |
|  | IN10 state: $0=$ S 10 open; $1=$ S 10 closed |  | 1 | Bit 9 |
|  | IN9 state: 0=S9 open; $1=$ S9 closed |  | 1 | Bit 8 |
|  | IN8 state: $0=$ S8 open; $1=$ S8 closed |  | 1 | Bit 7 |
|  | IN7 state: 0=S7 open; $1=$ S 7 closed |  | 1 | Bit 6 |
|  | IN6 state: $0=$ S6 open; $1=$ S6 closed |  | 1 | Bit 5 |
|  | IN5 state: 0=S5 open; $1=$ S5 closed |  | 1 | Bit 4 |
|  | IN4 state: $0=$ S4 open; $1=$ S4 closed |  | 1 | Bit 3 |
|  | IN3 state: $0=$ S3 open; $1=$ S3 closed |  | 1 | Bit 2 |
|  | IN2 state: $0=$ S2 open; $1=$ S2 closed |  | 1 | Bit 1 |
|  | IN1 state: $0=$ S1 open; $1=$ S 1 closed |  | 1 | Bit 0 |
| State IN17- <br> IN24 | Bit | R |  | 40302 |
|  | These bits aren't used |  | 1 | Bit [15:8] |
|  | IN24 state: 0=S24 open; 1=S24 closed |  | 1 | Bit 7 |
|  | IN23 state: 0=S23 open; $1=$ S23 closed |  | 1 | Bit 6 |
|  | IN22 state: 0=S22 open; $1=$ S22 closed |  | 1 | Bit 5 |
|  | IN21 state: $0=$ S21 open; $1=$ S21 closed |  | 1 | Bit 4 |
|  | IN20 state: 0=S20 open; $1=$ S20 closed |  | 1 | Bit 3 |
|  | IN19 state: $0=$ S19 open; $1=$ S19 closed |  | 1 | Bit 2 |
|  | IN18 state: $0=$ S18 open; $1=$ S18 closed |  | / | Bit 1 |
|  | IN17 state: $0=$ S17 open; $1=$ S17 closed |  | I | Bit 0 |


| PulseCounter1 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R | 40008 |
| :---: | :---: | :---: | :---: | :---: |
| PulseCounter1 LSW |  | FP32bit-LSW | R | 40009 |
|  | 32-bit pulse counter for input 1 |  |  |  |
| PresetCounter 1_MSW | Between:0; (2^31)-1 | FP32bit-MSW | R/W | 40030 |
| PresetCounter 1_LSW |  | FP32bit-LSW | R/W | 40031 |
|  | Preset counter value of PulseCounter1 |  |  |  |
| PulseCounter2 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R | 40010 |
| PulseCounter2 LSW |  | FP32bit-LSW | R | 40011 |
|  | 32-bit pulse counter for input 2 |  |  |  |
| PresetCounter 2 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R/W | 40032 |
| PresetCounter 2_LSW |  | FP32bit-LSW | R/W | 40033 |
|  | Preset counter value of PulseCounter2 |  |  |  |
| PulseCounter3 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R | 40012 |
| PulseCounter3 LSW |  | FP32bit-LSW | R | 40013 |
|  | 32-bit pulse counter for input 3 |  |  |  |
| PresetCounter 3 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R/W | 40034 |
| PresetCounter 3_LSW |  | FP32bit-LSW | R/W | 40035 |
|  | Preset counter value of PulseCounter3 |  |  |  |
| PulseCounter4 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R | 40014 |
| PulseCounter4 LSW |  | FP32bit-LSW | R | 40015 |
|  | 32-bit pulse counter for input 4 |  |  |  |
| PresetCounter 4 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R/W | 40036 |
| PresetCounter 4_LSW |  | FP32bit-LSW | R/W | 40037 |
|  | Preset counter value of PulseCounter4 |  |  |  |
| PulseCounter5 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R | 40016 |
| PulseCounter5 LSW |  | FP32bit-LSW | R | 40017 |
|  | 32-bit pulse counter for input 5 |  |  |  |
| PresetCounter 5 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R/W | 40038 |
| PresetCounter 5_LSW |  | FP32bit-LSW | R/W | 40039 |
|  | Preset counter value of PulseCounter5 |  |  |  |
| PulseCounter6 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R | 40018 |
| PulseCounter6 LSW |  | FP32bit-LSW | R | 40019 |
|  | 32-bit pulse counter |  |  |  |


| PresetCounter 6 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R/W |  | 40040 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { PresetCounter } \\ & \text { 6_LSW } \end{aligned}$ |  | FP32bit-LSW | R/W |  | 40041 |
|  | Preset counter value of PulseCounter6 |  |  |  |  |
| PulseCounter7 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R |  | 40020 |
| PulseCounter7LSW |  | FP32bit-LSW | R |  | 40021 |
|  | 32-bit pulse counter for input 7 |  |  |  |  |
| PresetCounter 7 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R/W |  | 40042 |
| $\begin{aligned} & \text { PresetCounter } \\ & \text { 7_LSW } \end{aligned}$ |  | FP32bit-LSW | R/W |  | 40043 |
|  | Preset counter value of PulseCounter7 |  |  |  |  |
| PulseCounter8 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R |  | 40022 |
| $\begin{aligned} & \text { PulseCounter8 } \\ & \text { _LSW } \end{aligned}$ |  | FP32bit-LSW | R |  | 40023 |
|  | 32-bit pulse counter for input 8 |  |  |  |  |
| PresetCounter 8 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R/W |  | 40044 |
| $\begin{aligned} & \text { PresetCounter } \\ & \text { 8_LSW } \\ & \hline \end{aligned}$ |  | FP32bit-LSW | R/W |  | 40045 |
|  | Preset counter value of PulseCounter8 |  |  |  |  |
| Overflow |  | Bit | R |  | 40007 |
|  | These bits aren't used |  |  | 1 |  |
|  | Pulse counter 8 overflow: $0=$ there isn't; $1=$ there is |  |  | 1 |  |
|  | Pulse counter 7 overflow: $0=$ there isn't; $1=$ there is |  |  | 1 |  |
|  | Pulse counter 6 overflow: $0=$ there isn't; $1=$ there is |  |  | 1 |  |
|  | Pulse counter 5 overflow: $0=$ there isn't; 1 =there is |  |  | 1 |  |
|  | Pulse counter 4 overflow: $0=$ there isn't; 1 =there is |  |  | 1 |  |
|  | Pulse counter 3 overflow: $0=$ there isn't; 1 =there is |  |  | 1 |  |
|  | Pulse counter 2 overflow: $0=$ there isn't; 1 =there is |  |  | 1 |  |
|  | Pulse counter 1 overflow: $0=$ there isn't; $1=$ there is |  |  | 1 |  |

The «Input Status»-type registers used for ZC-24DI module are shown in the following table:

| Name | Range | Interpretation of register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: | :---: |
| State IN1 | 0-1 | Word | R |  | 10001 |
|  | IN1 state: 0=S1 open; 1=S1 closed |  |  | 1 |  |
| State IN2 | 0-1 | Word | R |  | 10002 |
|  | IN2 state: 0=S2 open; 1=S2 closed |  |  | 1 |  |
| State IN3 | 0-1 | Word | R |  | 10003 |
|  | IN3 state: 0=S3 open; 1=S3 closed |  |  | / |  |
| State IN4 | 0-1 | Word | R |  | 10004 |
|  | IN4 state: 0=S4 open; 1=S4 closed |  |  | 1 |  |
| State IN5 | 0-1 | Word | R |  | 10005 |
|  | IN5 state: $0=$ S5 open; $1=$ S5 closed |  |  | 1 |  |
| State IN6 | 0-1 |  | R |  | 10006 |
|  | IN6 state: 0=S6 open; 1=S6 closed |  |  | / |  |
| State IN7 | 0-1 |  | R |  | 10007 |
|  | IN7 state: 0=S7 open; 1=S7 closed |  |  | 1 |  |
| State IN8 | 0-1 |  | R |  | 10008 |
|  | IN8 state: 0=S8 open; 1=S8 closed |  |  | 1 |  |
| State IN9 | 0-1 |  | R |  | 10009 |
|  | IN9 state: $0=$ S9 open; $1=$ S9 closed |  |  | 1 |  |



## LEDs for signalling

In the front-side panel there are 28 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| FAIL | Blinking light | The module received a data packet through RS232 port |
| ERR (TX) | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module sent a data packet |
| RUN (RX) | Blinking light | The module received a data packet |
|  | Constant light | Verify if the bus connection is corrected |
| $1-24$ | Constant light | IN1-24 state equal to «1» |
|  | No light | IN1-24 state equal to «0» (if the power is on) |

## Seneca Z-PC Line module: ZC-24DO

The module ZC-24DO controls 24 digital outputs (OUT1-OUT24), each of them (by MOSFET) actives/deactivates a output load.

## General characteristics

$>$ Outputs are available on 24 screw terminals or IDC $10 /$ IDC 20 connectors, to facilitate the connection of 24 V -relays
$>$ It is possible to manage the output state if the interval time of RS485-bus communication failure is greater than a configurable time (up to 25.5 sec ): output is kept at the previous value or output is overwritten on register
$>$ It is possible to manage the output state if there is a over-temperature or short-circuited (towards ground)
$>$ Configuration of the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
> It is possible to switch automatically RS485 to RS232 or vice versa
> CAN interface with CANOpen protocol: max 1 Mbps

## Features

| OUTPUT |  |
| :---: | :---: |
| Number | 24 |
| Type | MOSFET (Open source) |
| Max current through each load | 0.5 A . The supplied currents sum through all loads (these currents are inwards with reference to the screw terminals $8-16):<12 A$, using a fuse or equivalent protection (if the connection is performed through screw terminals) |
|  | 25 mA . The supplied currents sum through all loads (these currents are inwards with reference to the screw terminals $8-16$ ): $<0.6 \mathrm{~A}$, using a fuse or equivalent protection (if the connection is performed through IDC10, IDC20 connectors). <br> This solution is recommended to power 24V-relays |
| Max state-switching frequency for each load | 2 Hz |
| MOSFET protection | The MOSFETs are protected against: load short-circuited, overtemperature |
| MOSFET supply | With reference to the screw terminals 7-15-23-32 (GND), power the MOSFETs by screw terminals 8 or 16 (Vext): min5V, max30V |
| MOSFET max energy | 40 mJ with inductive load |
| MOSFET response time | $5 / 2 \mathrm{~ms}$ |
| $\mathrm{R}_{\text {DSON }}$ | $0.75 \Omega$ |
| Switching delay | 1ms (max) |
| CONNECTIONS |  |
| RS485 interface | IDC10 connector for DIN 46277 rail (back-side panel) |
| 1500 Vac ISOLATIONS |  |
|  | Between: power supply, ModBUS RS485, digital output |



POWER SUPPLY

| Supply voltage <br> Power <br> consumption | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

| MODULE CASE |  |
| :--- | :--- |
| Case-type | PBT, black |
| Dimensions | Removable 4-way screw terminals: <br> pitch 3.5mm, sections 2.5mm |
| Terminal board | IP20 (International Protection) |
| Protection class |  |

## Output connections

Power on the module with < 40 Vdc or < 28 Vac voltage supply. These upper limits must not be exceeded to avoid serious damage to the module.

## MAX Vext=30V

ZC-24DO


GND



## - IDC 10 CONNECTOR PIN $\oslash$ SCREW TERMINAL



- IDC 20 CONNECTOR PIN

Ø SCREW TERMINAL

## Dip-switches table

Power off the module before configuring it by Dip-Switches to avoid serious damage due to electrostatic discharges.

In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).


## RS485 Register table




| Errors Out9-16 safe values | / | Bit | R/W |  | 40013 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | Output 16 safe value: 0; 1 |  |  | 0 | Bit 7 |
|  | Output 15 safe value: $0 ; 1$ |  |  | 0 | Bit 6 |
|  | Output 14 safe value: 0; 1 |  |  | 0 | Bit 5 |
|  | Output 13 safe value: 0;1 |  |  | 0 | Bit 4 |
|  | Output 12 safe value: 0; 1 |  |  | 0 | Bit 3 |
|  | Output 11 safe value: 0; 1 |  |  | 0 | Bit 2 |
|  | Output 10 safe value: 0;1 |  |  | 0 | Bit 1 |
|  | Output 9 safe value: 0; 1 |  |  | 0 | Bit 0 |
|  | OUTPUT 17-24 ERROR MANAGEMENT |  |  |  |  |
| Errors <br> Out17-24 | / | Bit | R |  | 40008 |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | Output 24 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is |  |  | 1 | Bit 7 |
|  | Output 23 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is |  |  | 1 | Bit 6 |
|  | Output 22 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is |  |  | / | Bit 5 |
|  | Output 21 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is |  |  | / | Bit 4 |
|  | Output 20 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is |  |  | / | Bit 3 |
|  | Output 19 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is |  |  | / | Bit 2 |
|  | Output 18 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is |  |  | 1 | Bit 1 |
|  | Output 17 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is |  |  | / | Bit 0 |
| Errors Out1724 behavior | 1 | Bit | R/W |  | 40011 |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | Output 24 behavior if bit40008.7=1: $0=$ output is kept at the previous value; $1=$ bit40014.7 is overwritten on bit40005.7, bit 40302.7 and reg. 00024 |  |  | 1 | Bit 7 |
|  | Output 23 behavior if bit40008.6=1: $0=o u t p u t$ is kept at the previous value; $1=$ bit40014.6 is overwritten on bit40005.6, bit 40302.6 and reg. 00023 |  |  | 1 | Bit 6 |
|  | Output 22 behavior if bit40008.5=1: $0=$ output is kept at the previous value; $1=$ bit40014.5 is overwritten on bit40005.5, bit 40302.5 and reg. 00022 |  |  | 1 | Bit 5 |
|  | Output 21 behavior if bit40008.4=1: $0=$ output is kept at the previous value; $1=$ bit40014.4 is overwritten on bit40005.4, bit 40302.4 and reg. 00021 |  |  | 1 | Bit 4 |
|  | Output 20 behavior if bit $40008.3=1: 0=$ output is kept at the previous value; $1=$ bit40014.3 is overwritten on bit40005.3, bit 40302.3 and reg. 00020 |  |  | 1 | Bit 3 |
|  | Output 19 behavior if bit40008.2=1: $0=$ output is kept at the previous value; $1=$ bit40014.2 is overwritten on bit40005.2, bit 40302.2 and reg. 00019 |  |  | 1 | Bit 2 |
|  | Output 18 behavior if bit40008.1=1: $0=$ output is kept at the previous value; $1=$ bit40014.1 is overwritten on bit40005.1, bit 40302.1 and reg. 00018 |  |  | 1 | Bit 1 |
|  | Output 17 behavior if bit40008.0=1: $0=$ output is kept at the previous value; $1=$ bit40014.0 is overwritten on bit40005.0, bit 40302.0 and reg. 00017 |  |  | 1 | Bit 0 |


| Errors Out17- <br> 24 safe values | $/$ | Bit | R/W |  |
| :--- | :--- | :--- | :--- | :--- |
|  | These bits aren't used | $/$ |  |  |
|  | Output 24 safe value: $0 ; 1$ | 0 | Bit [15:8] |  |
|  | Output 23 safe value: $0 ; 1$ | 0 | Bit 6 |  |
|  | Output 22 safe value: $0 ; 1$ | 0 | Bit 5 |  |
|  | Output 21 safe value: $0 ; 1$ | 0 | Bit 4 |  |
|  | Output 20 safe value: $0 ; 1$ | 0 | Bit 3 |  |
|  | Output 19 safe value: $0 ; 1$ | 0 | Bit 2 |  |
|  | Output 18 safe value: $0 ; 1$ | 0 | Bit 1 |  |
|  | Output 17 safe value: $0 ; 1$ | 0 | Bit 0 |  |


| Command | l | Word | R/W |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Reg.40201=0xBCD0 (save data in EEPROM memory) <br> Reg.40201=0xC1A0 (module reset) <br> Reg.40201=0x6BAC (the module writes the Dip-Switches- <br> state in reg.40202) |  |  |  |
|  | Command aux |  |  | Bit |
|  | These bits aren't used | R |  | 40201 |
|  | Dip-Switches "SW1 [4:10]" state. They correspond to the <br> module baud-rate | $/$ | Bit [15:10] |  |
|  | Dip-Switches "SW1 [1:3]" state. They correspond to the <br> module address | $/$ | Bit [9:3] |  |


| Address Parity | Address: from $0 \times 01=1$ to $0 \times F F=255$ | MSB, LSB | R/W |  | 40017 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Address for RS485 (address of module/node if parameters are configurated by memory modality) |  |  | 1 | Bit [15:8] |
|  | Parity for RS485: 0=no parity; 1=even; 2=odd |  |  | 0 | Bit [7:0] |
| Baudrate Delay | Delay: from $0 \times 00=0$ to 0xFF=255 | MSB, LSB | R/W |  | 40018 |
|  | Baud-rate for RS485 (baud-rate of module/node if parameters are configurated by memory modality):$\begin{aligned} & 1=2400 ; 2=4800 ; 3=9600 ; 4=19200 ; 5=38400 ; 6=57600 ; \\ & 7=115200 \end{aligned}$ |  |  | 38400 | Bit [15:8] |
|  | Delay for RS485 (delay of communication response: pauses between the end of $R x$ message and the start of Tx message) |  |  | 0 | Bit [7:0] |
| State <br> OUT1-OUT8 |  | Bit | R/W |  | 40003 |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | Output OUT8 state: $0=$ LOAD8 is deactivated (there is no current through LOAD8); $1=$ LOAD8 is activated (there is current through LOAD8) |  |  | 0 | Bit 7 |
|  | Output OUT7 state: $0=$ LOAD7 is deactivated (there is no current through LOAD7); $1=$ LOAD7 is activated (there is current through LOAD7) |  |  | 0 | Bit 6 |
|  | Output OUT6 state: $0=$ LOAD6 is deactivated (there is no current through LOAD6); $1=$ LOAD6 is activated (there is current through LOAD6) |  |  | 0 | Bit 5 |
|  | Output OUT5 state: $0=$ LOAD5 is deactivated (there is no current through LOAD5); $1=$ LOAD5 is activated (there is current through LOAD5) |  |  | 0 | Bit 4 |
|  | Output OUT4 state: $0=$ LOAD4 is deactivated (there is no current through LOAD4); $1=$ LOAD4 is activated (there is current through LOAD4) |  |  | 0 | Bit 3 |





The «Coil Status»-type registers used for ZC-24DO module are shown in the following table:

| Name | Range | Interpretation of register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: | :---: |
| State OUT1 | 0-1 | Word | R/W | 0 | 00001 |
|  | Output OUT1 state: $0=$ LOAD1 is deactivated (there is no current through LOAD1); 1=LOAD1 is activated (there is current through LOAD1) |  |  |  |  |
| State OUT2 | 0-1 |  | R/W |  | 00002 |
|  | Output OUT2 state: $0=$ LOAD2 is deactivated (there is no current through LOAD2); 1=LOAD2 is activated (there is current through LOAD2) |  |  | 0 |  |
| State OUT3 | 0-1 |  | R/W |  | 00003 |
|  | Output OUT3 state: $0=$ LOAD3 is deactivated (there is no current through LOAD3); $1=$ LOAD3 is activated (there is current through LOAD3) |  |  | 0 |  |
| State OUT4 | 0-1 |  | R/W |  | 00004 |
|  | Output OUT4 state: $0=$ LOAD4 is deactivated (there is no current through LOAD4); 1=LOAD4 is activated (there is current through LOAD4) |  |  | 0 |  |




## LEDs for signalling

In the front-side panel there are 28 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| FAIL | Constant light | The module received a data packet through RS232 port |
|  | Blinking light | The module has at least one of the errors described in RS485 <br> Registers table (at least one output over-temperature error or <br> short-circuited) |
| ERR (TX) | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module sent a data packet |
|  | Blinking light | The module received a data packet |
|  | Constant light | Verify if the bus connection is corrected |
| $1-24$ | Constant light | OUT1-24 state equal to «1» |
|  | No light | OUT1-24 state equal to «0» (if the power is on and the outputs <br> are supplied) |

## Seneca Z-PC Line module: ZC-16DI-8D0

The module ZC-16DI-8DO:

- acquires 16 single-ended digital signals, it converts them to a digital format (IN 1-16 state) and it counts the input-pulse number (pulse counter for IN 1-8);
- controls 8 digital outputs (OUT1-OUT8), each of them (by MOSFET) actives/deactivates a output load.


## General characteristics

$>$ Acquisition of digital signals from sensor: reed, NPN, PNP, proximity, contact, etc...
$>$ Configuration of a filter applied to input signals IN1-IN8 (noise filter) to attenuate the noise overlapped to the digital signals
> Pulse counters for digital signals IN1-IN8, with max frequency equal to 10kHz, 32bit-registers
$>$ Advanced management of the pulse counters for digital signals IN1-IN8 (for each pulse counter: overflow, preset value and reset/preset command are available)
> Power of 16 sensors using internal supply voltage (Vaux=16V)
$>$ Outputs are available on 8 screw terminals or IDC 10 connectors, to facilitate the connection of 24V-relays
$>$ It is possible to manage the output state if the interval time of RS485-bus communication failure is greater than a configurable time (up to 25.5 sec ): output is kept at the previous value or output is overwritten on register
$>$ It is possible to manage the output state if there is a over-temperature or short-circuited (towards ground)
$>$ Configuration of the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
> It is possible to switch automatically RS485 to RS232 or vice versa
> CAN interface with CANOpen protocol: max 1Mbps

## Features

| INPUT | 16 |
| :--- | :--- |
| Number | Polarity (EN 61131-2 type 2): sink (pnp) |
| Type | Configurable between: 16 Hz and 2.1 kHz |
| Equivalent low-pass- <br> filter cut-off frequency | $350 \mu \mathrm{~s}$ |
| Pulse min duration <br> (ton) | The sensor is detected «off» if: acquired signal voltage between <br> 0Vdc and 7 Vdc |
| Sensor=off <br> (input threshold) | The sensor is detected «on» if: acquired signal voltage between <br> 11Vdc and 30Vdc |
| Sensor=on <br> (input threshold) | Typical: 1.2ms; max: 3ms |
| Switching delay | 3mA (for each input) |
| Adsorbed current | The screw terminals 24-32 (Vaux) supply 16 V with reference to <br> the screw terminal 7-15-23-31 (GND) |
| Internal supply Vaux |  |


| OUTPUT |  |
| :---: | :---: |
| Number | 8 |
| Type | MOSFET (Open source) |
| Max current through each load | 0.5 A . The supplied currents sum through all loads (these currents are inwards with reference to the screw terminals $8-16):<4 \mathrm{~A}$, using a fuse or equivalent protection (if the connection is performed through screw terminals) |
|  | 25 mA . The supplied currents sum through all loads (these currents are inwards with reference to the screw terminals $8-16):<0.2 \mathrm{~A}$, using a fuse or equivalent protection (if the connection is performed through IDC10 connector) |
| Max state-switching frequency for each load | 2 Hz |
| MOSFET protection | The MOSFETs are protected against: load short-circuited, overtemperature |
| MOSFET supply | With reference to the screw terminals 7-15-23-32 (GND), power the MOSFETs by screw terminals 8 or 16 (Vext): $\min 5 \mathrm{~V}$, max 30 V |
| MOSFET max energy | 40 mJ with inductive load |
| MOSFET response time | 5/2ms |
| $\mathrm{R}_{\text {DSON }}$ | $0.75 \Omega$ |
| Switching delay | $1 \mathrm{~ms} \mathrm{(max)}$ |
| CONNECTIONS |  |
| RS485 interface 1500 Vac ISOLATIONS ${ }^{\text {IDC10 }}$ connector for DIN 46277 rail (back-side panel) |  |
|  |  |
|  | Between: power supply, ModBUS RS485, digital outputs |



POWER SUPPLY

| Supply voltage | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Power <br> consumption | Typical: $1.5 \mathrm{~W} ; \mathrm{Max}: 2.5 \mathrm{~W}$ |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

| MODULE CASE |  |
| :--- | :--- |
| Case-type | PBT, black |
| Dimensions | Width $\mathrm{W}=100 \mathrm{~mm}$, Height $\mathrm{H}=112 \mathrm{~mm}$, Depth D $=35 \mathrm{~mm}$ |
| Terminal board | Removable 4-way screw terminals: <br> pitch 3.5mm, sections 2.5mm |
| Protection class | IP20 (International Protection) |

## Input connections

Power on the module with < 40 Vdc or < 28 Vac voltage supply. These upper limits must not be exceeded to avoid serious damage to the module.


## Output connections



## Dip-switches table

Power off the module before configuring it by Dip-Switches to avoid serious damage due to electrostatic discharges.
$1 D-3$
In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).


## RS485 Register table

| Name | Range | Interpretation of register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MachineID | 1 | MSB, LSB | R |  | 40001 |
|  | Id_Code (Module ID) |  |  | $\begin{aligned} & 0 \times 22 \quad(34 \\ & \text { decimal) } \\ & \hline \end{aligned}$ | Bit [15:8] |
|  | Ext_Rev (Module version) |  |  |  | Bit [7:0] |
| FWREV | / | Word | R |  | 40002 |
|  | Firmware Code |  |  |  |  |
| Command | 1 | Word | R/W |  | 40201 |

Reg.40201=0x5Cnn (preset counter values are loaded into pulse counters, using a bit interpretation to mask the inputs): load 40025,40026...40039,40040 into 40009, 40010...40023,40024.
Examples:
$0 \times 5 \mathrm{C} 01$ allows to load PresetCounter1 into PulseCounter1
$0 \times 5 \mathrm{C} 02$ allows to load PresetCounter2 into PulseCounter2
$0 \times 5 \mathrm{C} 03$ allows to load PresetCounter1 into PulseCounter1 and PresetCounter2 into PulseCounter2 (not PresetCounter3 into PulseCounter3) and so on 0x5CFF allows to load every PresetCounter into corresponding PulseCounter
Reg.40201=0x5Dnn (pulse counters value are loaded with zero values, using a bit interpretation to mask the inputs)
Examples:
$0 \times 5 \mathrm{D} 01$ allows to load PulseCounter1 with zero value
$0 \times 5 \mathrm{D} 02$ allows to load PulseCounter2 with zero value
0x5D03 allows to load PulseCounter1 and PresetCounter2 with zero value (not PresetCounter3 with zero value) and so on
$0 \times 5 \mathrm{DFF}$ allows to load every PulseCounter with zero value
Reg.40201=0x5Enn (counter overflows reset, using a bit interpretation to mask the inputs)
Examples:
0x5E01 allows to reset PulseCounter1 overflow
$0 \times 5 \mathrm{E} 02$ allows to reset PulseCounter2 overflow
$0 \times 5 \mathrm{E} 03$ allows to reset PulseCounter2 overflow and to reset PulseCounter2 overflow (not to reset PulseCounter3 overflow) and so on
$0 \times 5$ EFF allows to reset every PulseCounter overflow
Reg.40201=0xBAB0 (save data in EEPROM memory)
Reg.40201=0xC1A0 (module reset)
Reg.40201=0x6BAC (the module writes the Dip-Switches-state in reg.40202)

| Command aux |  | Bit | R |  | 40202 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | These bits aren't used |  |  | 1 | Bit [15:10] |
|  | Dip-Switches "SW1 [4:10]" state. They correspond to the module baud-rate |  |  | 1 | Bit [9:3] |
|  | Dip-Switches "SW1 [1:3]" state. They correspond to the module address |  |  | / | Bit [2:0] |
| Errors | 1 | Word | R |  | 40006 |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | Memory error (EEPROM): $0=$ there isn't; $1=$ there is |  |  | 1 | Bit 7 |
|  | These bits aren't used |  |  | 1 | Bit [6:4] |
|  | Over-temperature error: $0=$ there isn't; 1 =there is |  |  | 1 | Bit 3 |
|  | These bits aren't used |  |  | 1 | Bit [2:0] |
| Filter[IN1-8] masked | / | Word | R/W |  | 40043 |
|  | These bits aren't used |  |  | I | Bit [15:8] |
|  | Filter activation for inputs IN1-IN8 using a bit interpretation to mask the inputs: $0=$ filter is deactivated; $1=$ filter is activated (for each input) |  |  | 0xFF | Bit [7:0] |


| Filter[IN9-16] | 1 | Word | R/W |  | 40044 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | Filter activation for inputs IN9-IN16 using a bit interpretation to mask the inputs: $0=$ filter is deactivated; 1 =filter is activated (for each input) |  |  | 0xFF | Bit [7:0] |
| Filter Number Of Samples | From 0 to 255 | Word | R/W |  | 40045 |
|  | These bits aren't used |  |  |  | Bit [15:8] |
|  | Number of samples for filter |  |  | $0 \times 28 \quad(40$ decimal) | Bit [7:0] |
| Filter Sup | From 0 to 255 | Word | R/W |  | 40046 |
|  | These bits aren't used |  |  |  | Bit [15:8] |
|  | Inferior threshold for filter |  |  | $0 \times 14 \quad$ (20 decimal) | Bit [7:0] |
| Filter Inf | From 0 to 255 | Word | R/W |  | 40047 |
|  | These bits aren't used |  |  |  | Bit [15:8] |
|  | Superior threshold for filter |  |  | $0 \times 14 \quad$ (20 decimal) | Bit [7:0] |

$[1-\Rightarrow$ Default equivalent filter value is 100 Hz (cut-off frequency).

## Filter functioning

Input filter operates in the following way: the module samples the digital input with a frequency equal to 20 kHz , and some samples are captured (in the following figure there are 9 samples).



Counter of samples=5
time

If counter of samples is greater than (or equal to) reg. 40046 (Filter Sup), input signal is detected as " 1 ".

If counter of samples is less than (or equal to) reg. 40047 (Filter Inf), input signal is detected as " 0 ".

If counter of samples is between reg. 40047 (Filter Inf) and reg. 40046 (Filter Sup), filter value is kept stored at the previous value.

Example: with reference to the previous figure
A) Counter of samples (for superior figure) $=0+1+1+1-1-1-1+1+1-1=\mathbf{1}$

If Filter $\operatorname{Inf}=2$, Filter $\operatorname{Sup}=4: 1 \geq 4$ is false, $1<2$ is true. So input is detected as " 0 "
B) Counter of samples (for inferior figure) $=0+1+1+1+1-1-1+1+1+1=5$

If Filter $\operatorname{Inf}=2$, Filter Sup=4: $5 \geq 4$ is true, $5<2$ is false. So input is detected as " 1 "


To deactivate the filter, write: reg.40045=0x01, reg.40046=0x00, reg.40047=0x00.

This filter action is described in configuration software as a low pass digital filter, with cut-off frequency from 16 Hz to 2.1 kHz .

| Address Parity | Address: from $0 \times 01=1$ to 0xFF=255 | MSB, LSB | R/W |  | 40050 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Address for RS485 (address of module/node if parameters are configurated by memory modality) |  |  | 1 | Bit [15:8] |
|  | Parity for RS485: 0=no parity; 1=even; 2=odd |  |  | 0 | Bit [7:0] |
| Baudrate Delay | Delay: from $0 \times 00=0$ to $0 \times F F=255$ | MSB, LSB | R/W |  | 40051 |
|  | Baud-rate for RS485 (baud-rate of module/node if parameters are configurated by memory modality):$\begin{aligned} & 1=2400 ; 2=4800 ; 3=9600 ; 4=19200 ; 5=38400 ; 6=57600 ; \\ & 7=115200 \end{aligned}$ |  |  | 38400 | Bit [15:8] |
|  | Delay for RS485 (delay of communication response: pauses between the end of Rx message and the start of Tx message) |  |  | 0 | Bit [7:0] |
| State IN1-IN16 |  | Bit | R |  | 40301 |
|  | IN16 state: 0=S16 open; $1=$ S16 closed |  |  | / | Bit 15 |
|  | IN15 state: $0=$ S15 open; $1=$ S15 closed |  |  | 1 | Bit 14 |
|  | IN14 state: $0=$ S14 open; $1=$ S14 closed |  |  | 1 | Bit 13 |
|  | IN13 state: $0=$ S13 open; $1=$ S13 closed |  |  | 1 | Bit 12 |
|  | IN12 state: $0=$ S12 open; $1=$ S12 closed |  |  | 1 | Bit 11 |
|  | IN11 state: $0=$ S11 open; $1=$ S11 closed |  |  | 1 | Bit 10 |
|  | IN10 state: 0=S10 open; 1=S10 closed |  |  | 1 | Bit 9 |
|  | IN9 state: 0=S9 open; 1=S9 closed |  |  | 1 | Bit 8 |
|  | IN8 state: 0=S8 open; 1=S8 closed |  |  | 1 | Bit 7 |
|  | IN7 state: $0=$ S7 open; $1=$ S7 closed |  |  | 1 | Bit 6 |
|  | IN6 state: $0=$ S6 open; $1=$ S6 closed |  |  | 1 | Bit 5 |
|  | IN5 state: 0=S5 open; 1=S5 closed |  |  | 1 | Bit 4 |
|  | IN4 state: $0=$ S4 open; $1=$ S4 closed |  |  | 1 | Bit 3 |
|  | IN3 state: $0=$ S3 open; $1=$ S3 closed |  |  | 1 | Bit 2 |
|  | IN2 state: 0=S2 open; 1=S2 closed |  |  | 1 | Bit 1 |
|  | IN1 state: $0=$ S1 open; $1=$ S1 closed |  |  | 1 | Bit 0 |
| State IN1-IN8 |  | Bit | R |  | 40003 |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | IN8 state: 0=S8 open; 1=S8 closed |  |  | 1 | Bit 7 |
|  | IN7 state: $0=$ S7 open; $1=$ S7 closed |  |  | 1 | Bit 6 |
|  | IN6 state: 0=S6 open; 1=S6 closed |  |  | 1 | Bit 5 |
|  | IN5 state: $0=$ S5 open; $1=$ S5 closed |  |  | 1 | Bit 4 |
|  | IN4 state: 0=S4 open; 1=S4 closed |  |  | 1 | Bit 3 |
|  | IN3 state: $0=$ S3 open; 1=S3 closed |  |  | 1 | Bit 2 |
|  | IN2 state: 0=S2 open; 1=S2 closed |  |  | 1 | Bit 1 |
|  | IN1 state: $0=$ S1 open; $1=$ S1 closed |  |  | 1 | Bit 0 |
| State IN9-IN16 |  | Bit | R |  | 40004 |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | IN16 state: $0=$ S16 open; $1=$ S16 closed |  |  | 1 | Bit 7 |
|  | IN15 state: $0=$ S15 open; $1=$ S15 closed |  |  | 1 | Bit 6 |
|  | IN14 state: 0=S14 open; $1=$ S14 closed |  |  | 1 | Bit 5 |
|  | IN13 state: $0=$ S13 open; $1=$ S13 closed |  |  | 1 | Bit 4 |
|  | IN12 state: $0=$ S12 open; $1=$ S12 closed |  |  | 1 | Bit 3 |
|  | IN11 state: $0=$ S11 open; $1=$ S11 closed |  |  | 1 | Bit 2 |
|  | IN10 state: $0=$ S10 open; $1=$ S10 closed |  |  | 1 | Bit 1 |
|  | IN9 state: $0=$ S9 open; $1=$ S9 closed |  |  | 1 | Bit 0 |
| PulseCounter1 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R |  | 40009 |
| PulseCounter1 LSW |  | FP32bit-LSW | R |  | 40010 |
|  | 32-bit pulse counter for input 1 |  |  |  |  |



| PresetCounter 7 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R/W |  | 40037 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PresetCounter 7 LSW |  | FP32bit-LSW | R/W |  | 40038 |
|  | Preset counter value of PulseCounter7 |  |  | 0 |  |
| PulseCounter8 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R |  | 40023 |
| PulseCounter8 LSW |  | FP32bit-LSW | R |  | 40024 |
|  | 32-bit pulse counter for input 8 |  |  |  |  |
| PresetCounter 8 MSW | Between:0; (2^31)-1 | FP32bit-MSW | R/W |  | 40039 |
| PresetCounter 8 LSW |  | FP32bit-LSW | R/W |  | 40040 |
|  | Preset counter value of PulseCounter8 |  |  | 0 |  |
| Overflow |  | Bit | R |  | 40008 |
|  | These bits aren't used |  |  | 1 |  |
|  | Pulse counter 8 overflow: $0=$ there isn't; $1=$ there is |  |  | 1 |  |
|  | Pulse counter 7 overflow: $0=$ there isn't; $1=$ there is |  |  | 1 |  |
|  | Pulse counter 6 overflow: $0=$ there isn't; $1=$ there is |  |  | 1 |  |
|  | Pulse counter 5 overflow: $0=$ there isn't; $1=$ there is |  |  | 1 |  |
|  | Pulse counter 4 overflow: $0=$ there isn't; 1 =there is |  |  | / |  |
|  | Pulse counter 3 overflow: $0=$ there isn't; $1=$ there is |  |  | / |  |
|  | Pulse counter 2 overflow: $0=$ there isn't; $1=$ there is |  |  | / |  |
|  | Pulse counter 1 overflow: $0=$ there isn't; $1=$ there is |  |  | 1 |  |


| Errors Out1-8 | Bit $\quad$ R |  | 40007 |
| :---: | :---: | :---: | :---: |
|  | These bits aren't used | 1 | Bit [15:8] |
|  | Output 8 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is | 1 | Bit 7 |
|  | Output 7 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is | / | Bit 6 |
|  | Output 6 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is | 1 | Bit 5 |
|  | Output 5 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is | / | Bit 4 |
|  | Output 4 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is | / | Bit 3 |
|  | Output 3 over-temperature error or short-circuited: 0=there isn't; $1=$ there is | 1 | Bit 2 |
|  | Output 2 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is | 1 | Bit 1 |
|  | Output 1 over-temperature error or short-circuited: $0=$ there isn't; $1=$ there is | / | Bit 0 |
| Errors Out1-8 behavior |  |  | 40041 |
|  | These bits aren't used | 1 | Bit [15:8] |
|  | Output 8 behavior if bit40007.7=1: $0=0$ output is kept at the previous value; $1=$ bit40042.7 is overwritten on bit40005.7 and reg. 00024 | 1 | Bit 7 |
|  | Output 7 behavior if bit40007.6=1: $0=$ output is kept at the previous value; $1=$ bit40042.6 is overwritten on bit40005.6 and reg. 00023 | 1 | Bit 6 |
|  | Output 6 behavior if bit $40007.5=1$ : $0=$ output is kept at the previous value; $1=$ bit40042.5 is overwritten on bit40005.5 and reg. 00022 | 1 | Bit 5 |


|  | Output 5 behavior if bit40007.4=1: $0=$ output is kept at the previous value; $1=$ bit40042.4 is overwritten on bit40005.4 and reg. 00021 |  |  | 1 | Bit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Output 4 behavior if bit40007.3=1: $0=o u t p u t$ is kept at the previous value; $1=$ bit40042.3 is overwritten on bit40005.3 and reg. 00020 |  |  | 1 | Bit 3 |
|  | Output 3 behavior if bit40007.2=1: $0=o u t p u t$ is kept at the previous value; $1=$ bit40042.2 is overwritten on bit40005.2 and reg. 00019 |  |  | 1 | Bit 2 |
|  | Output 2 behavior if bit40007.1=1: $0=0$ output is kept at the previous value; $1=$ bit40042.1 is overwritten on bit40005.1 and reg. 00018 |  |  | 1 | Bit 1 |
|  | Output 1 behavior if bit40007.0=1: $0=0$ output is kept at the previous value; $1=$ bit40042.0 is overwritten on bit40005.0 and reg. 00017 |  |  | 1 | Bit 0 |
| Errors Out1-8 safe values | / | Bit | R/W |  | 40042 |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | Output 8 safe value: 0; 1 |  |  | 0 | Bit 7 |
|  | Output 7 safe value: $0 ; 1$ |  |  | 0 | Bit 6 |
|  | Output 6 safe value: 0; 1 |  |  | 0 | Bit 5 |
|  | Output 5 safe value: $0 ; 1$ |  |  | 0 | Bit 4 |
|  | Output 4 safe value: 0; 1 |  |  | 0 | Bit 3 |
|  | Output 3 safe value: 0; 1 |  |  | 0 | Bit 2 |
|  | Output 2 safe value: 0; 1 |  |  | 0 | Bit 1 |
|  | Output 1 safe value: $0 ; 1$ |  |  | 0 | Bit 0 |


| State |  | Bit | R/W |  | 40005 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | Output OUT8 state: $0=$ LOAD8 is deactivated (there is no current through LOAD8); $1=$ LOAD8 is activated (there is current through LOAD8) |  |  | 0 | Bit 7 |
|  | Output OUT7 state: $0=$ LOAD7 is deactivated (there is no current through LOAD7); $1=$ LOAD7 is activated (there is current through LOAD7) |  |  | 0 | Bit 6 |
|  | Output OUT6 state: $0=$ LOAD6 is deactivated (there is no current through LOAD6); $1=$ LOAD6 is activated (there is current through LOAD6) |  |  | 0 | Bit 5 |
|  | Output OUT5 state: $0=$ LOAD5 is deactivated (there is no current through LOAD5); $1=$ LOAD5 is activated (there is current through LOAD5) |  |  | 0 | Bit 4 |
|  | Output OUT4 state: $0=$ LOAD4 is deactivated (there is no current through LOAD4); $1=$ LOAD4 is activated (there is current through LOAD4) |  |  | 0 | Bit 3 |
|  | Output OUT3 state: $0=$ LOAD3 is deactivated (there is no current through LOAD3); $1=$ LOAD3 is activated (there is current through LOAD3) |  |  | 0 | Bit 2 |
|  | Output OUT2 state: $0=$ LOAD2 is deactivated (there is no current through LOAD2); $1=$ LOAD2 is activated (there is current through LOAD2) |  |  | 0 | Bit 1 |
|  | Output OUT1 state: $0=$ LOAD1 is deactivated (there is no current through LOAD1); $1=$ LOAD1 is activated (there is current through LOAD1) |  |  | 0 | Bit 0 |
| Timeout enabling |  | Bit | R/W |  | 40052 |
|  | These bits aren't used |  |  | 1 | Bit [15:1] |
|  | RS485-bus communication failure diagnostics:0=deactivated; $1=$ activated |  |  | 0 | Bit 0 |


| Timeout | From 0x00=0 to 0xFF=255 <br> $(=25.5 \mathrm{sec})$ | Bit | R/W |  |
| :--- | :--- | :--- | :--- | :--- |
|  | These bits aren't used | $/$ | Bit [15:8] |  |
|  | Timeout [sec/10] (if reg.40052 is "1"): it is the interval time <br> of RS485-bus communication failure, after which the bit <br> $40042 . X$ is overwritten in the bit 40005.X (with X=0;7) | 100 <br> $(=10 \mathrm{sec})$ | Bit [7:0] |  |

The «Coil Status»-type registers used for ZC-16DI-8DO module are shown in the following table:

| Name | Range | Interpretation of register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: | :---: |
| State IN1 | 0-1 | Bit | R |  | 00001 |
|  | IN1 state: 0=S1 open; 1=S1 closed |  |  | 1 |  |
| State IN2 | 0-1 | Bit | R |  | 00002 |
|  | IN2 state: 0=S2 open; 1=S2 closed |  |  | 1 |  |
| State IN3 | 0-1 | Bit | R |  | 00003 |
|  | IN3 state: $0=$ S3 open; $1=$ S3 closed |  |  | / |  |
| State IN4 | 0-1 | Bit | R |  | 00004 |
|  | IN4 state: $0=$ S4 open; $1=$ S4 closed |  |  | 1 |  |
| State IN5 | 0-1 | Bit | R |  | 00005 |
|  | IN5 state: $0=$ S5 open; $1=$ S5 closed |  |  | 1 |  |
| State IN6 | 0-1 | Bit | R |  | 00006 |
|  | IN6 state: $0=$ S6 open; $1=$ S6 closed |  |  | 1 |  |
| State IN7 | 0-1 | Bit | R |  | 00007 |
|  | IN7 state: $0=$ S7 open; $1=$ S7 closed |  |  | / |  |
| State IN8 | 0-1 | Bit | R |  | 00008 |
|  | IN8 state: 0=S8 open; 1=S8 closed |  |  | 1 |  |
| State IN9 | 0-1 | Bit | R |  | 00009 |
|  | IN9 state: $0=$ S9 open; $1=$ S9 closed |  |  | 1 |  |
| State IN10 | 0-1 | Bit | R |  | 00010 |
|  | IN10 state: $0=$ S10 open; $1=$ S10 closed |  |  | 1 |  |
| State IN11 | 0-1 | Bit | R |  | 00011 |
|  | IN11 state: $0=$ S11 open; $1=$ S11 closed |  |  | 1 |  |
| State IN12 | 0-1 | Bit | R |  | 00012 |
|  | IN12 state: $0=$ S12 open; $1=$ S12 closed |  |  | 1 |  |
| State IN13 | 0-1 | Bit | R |  | 00013 |
|  | IN13 state: $0=$ S13 open; $1=$ S13 closed |  |  | 1 |  |
| State IN14 | 0-1 | Bit | R |  | 00014 |
|  | IN14 state: $0=$ S14 open; $1=$ S14 closed |  |  | / |  |
| State IN15 | 0-1 | Bit | R |  | 00015 |
|  | IN15 state: $0=$ S15 open; $1=$ S15 closed |  |  | / |  |
| State IN16 | 0-1 | Bit | R |  | 00016 |
|  | IN16 state: $0=$ S16 open; $1=$ S16 closed |  |  | 1 |  |
| State OUT1 | 0-1 | Bit | R/W |  | 00017 |
|  | Output OUT1 state: $0=$ LOAD1 is deactivated (there is no current through LOAD1); $1=$ LOAD1 is activated (there is current through LOAD1) |  |  | 0 |  |
| State OUT2 | 0-1 | Bit | R/W |  | 00018 |
|  | Output OUT2 state: $0=$ LOAD2 is deactivated (there is no current through LOAD2); $1=$ LOAD2 is activated (there is current through LOAD2) |  |  | 0 |  |
| State OUT3 | 0-1 | Bit | R/W |  | 00019 |
|  | Output OUT3 state: $0=$ LOAD3 is deactivated (there is no current through LOAD3); $1=$ LOAD3 is activated (there is current through LOAD3) |  |  | 0 |  |


| State OUT4 | 0-1 | Bit | R/ |  | 00020 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Output OUT4 state: $0=$ LOAD4 is deactivated (there is no current through LOAD4); 1=LOAD4 is activated (there is current through LOAD4) |  |  |  |  |
| State OUT5 | 0-1 | Bit | R/ |  | 00021 |
|  | Output OUT5 state: $0=$ LOAD5 is deactivated (there is no current through LOAD5); $1=$ LOAD5 is activated (there is current through LOAD5) |  |  |  |  |
| State OUT6 | 0-1 | Bit | R/ |  | 00022 |
|  | Output OUT6 state: $0=$ LOAD6 is deactivated (there is no current through LOAD6); 1=LOAD6 is activated (there is current through LOAD6) |  |  |  |  |
| State OUT7 | 0-1 | Bit | R/ |  | 00023 |
|  | Output OUT7 state: $0=$ LOAD7 is deactivated (there is no current through LOAD7); 1=LOAD7 is activated (there is current through LOAD7) |  |  |  |  |
| State OUT8 | 0-1 | Bit | R/ |  | 00024 |
|  | Output OUT8 state: $0=$ LOAD8 is deactivated (there is no current through LOAD8); 1=LOAD8 is activated (there is current through LOAD8) |  |  |  |  |

## LEDs for signalling

In the front-side panel there are 28 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| FAIL | Constant light | The module received a data packet through RS232 port |
|  | Blinking light | The module has at least one of the errors described in RS485 <br> Registers table e (at least one output over-temperature error or <br> short-circuited |
| ERR (TX) | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module sent a data packet |
|  | Blinking light | The module received a data packet |
|  | Constant tight | Verify if the bus connection is corrected |
| $1-16$ | Constant light | IN1-16 state equal to «1» |
|  | No light | IN1-16 state equal to «0» (if the power is on) |
|  | Constant light | OUT1-8 state equal to «1» |
|  | No light | OUT1-8 state equal to «0» (if the power is on and the outputs <br> are supplied) |

## Seneca Z-PC Line module: Z-4AI

The Z-4AI module acquires up to 4 single-ended input signals (voltage or current type) and it converts them to a digital format (normalized measure).

## General characteristics

- It is possible to choose if each input is voltage or current type
- It is possible to enable/disable each input
- It is possible to change: the electrical start/end scale between $\pm 10 \mathrm{~V}, \pm 20 \mathrm{~mA}$, the normalized start/end scale between $\pm 32000$
- Configuration of the module (node) address and baud-rate by Dip-Switches
- It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
- It is possible to switch automatically RS485 to RS232 or vice versa


## Features

| INPUT |  |
| :---: | :---: |
| Number | 4 |
| Resolution | 16 bits $(15+1$ sign). If Electrical End-Scale (E.E.S.)<2V, resolution $=60 \mu \mathrm{~V}$; se $2 \mathrm{~V}<\mathrm{E} . \mathrm{E} . \mathrm{S} .<10 \mathrm{~V}$, resolution $=300 \mu \mathrm{~V}$ |
| Sampling time | Configurable between: 120 ms or 60 ms |
| Accuracy | Initial: $0.1 \%$ of E.E.S.. If E.E.S. $<2 \mathrm{~V}, \quad$ accuracy $=2 \mathrm{mV}$; if $2 \mathrm{~V}<E . E . S .<10 \mathrm{~V}$, accuracy $=10 \mathrm{mV}$ |
|  | Linearity: 0.03\% of E.E.S. (see initial accuracy) |
|  | Zero: 0.05\% of E.E.S. (see initial accuracy) |
|  | Thermal stability: < $100 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ |
|  | EMI: < 1\% |
| Protection | $\pm 30 \mathrm{Vdc}$ and 25 mA |
| Voltage-type IN | Bipolar with E.S.S./E.E.S.(Electrical Start/End Scale) configurable between: $\pm 10 \mathrm{Vdc}$. Input impedance: $>100 \mathrm{k} \Omega$ |
| Current-type IN | Bipolar with E.S.S./E.E.S. configurable between: $\pm 20 \mathrm{~mA}$.Internal shunt: $50 \Omega$. To enable these shunts, use the «Analog inputs» DipSwitches |
| Internal supply Vaux | The \#7 screw terminals: power 13V to max90mA |
| CONNECTIONS |  |
| RS485 interface | IDC10 connector for DIN 46277 rail (back-side panel) or (alternative the screw terminals: 4(GND), 5(B), 6(A) |
| RS232 interface | Jack stereo 3.5mm connector: plugs into COM port |
| 1500 Vac ISOLATIONS |  |



POWER SUPPLY

| Supply voltage | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Power <br> consumption | Min: 0.5 W ; Max: 2 W (to power 4 current loop) |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

## Input connections

It is possible to connect two types of sensors to the Z-4AI module:

- passive sensors, indicated with " S " label (these sensors have to be supplied: by a module external voltage Vext or by the module internal voltage Vaux);
- active sensors, indicated with "voltage generator" or "current generator" label (these sensors have already been supplied).

In the following figure are shown five possible sensor connections.


|  | Acquired <br> signal | Up to | Connection <br> modality | Sensors <br> power <br> supply |
| :--- | :--- | :--- | :--- | :--- |
| A | Voltage or <br> current type | 4 passive sensors | 3-wire | Vaux (*) |
| B | Voltage type | 4 sensors as voltage generator | 2-wire | $/$ |
| C | Current type | 4 sensors as current generator | 2-wire | $/$ |
| D | Current-active <br> type | 4 passive sensors | 2-wire | Vaux (*) |
| E | Current- <br> passive type | 4 passive sensors | 2-wire | Vext <br> (connect "-" <br> to GND) |

109
${ }^{(*)} A$ and $D$ connections are possible only if the absorbed currents sum from all sensors: <90mA.

## Dip-switches table

D- 2 In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).


| INPUT TYPE (Dip-Switches: ANALOG INPUTS) |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Meaning |
|  |  |  |  |  |  |  |  | IN 1=voltage |
| $\bullet$ |  |  |  |  |  |  |  | IN 1=current |
|  |  |  |  |  |  |  |  | IN 2 = voltage |
|  | $\bullet$ |  |  |  |  |  |  | IN 2=current |
|  |  |  |  |  |  |  |  | IN 3=voltage |
|  |  | $\bullet$ |  |  |  |  |  | IN 3=current |
|  |  |  |  |  |  |  |  | IN 4=voltage |
|  |  |  | $\bullet$ |  |  |  |  | IN 4=current |

RS485 Register table



| INPUT 2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IN 2 | $\begin{aligned} & \text { Between: IN 2-NSS, IN 2- } \\ & \text { NES (if bit } 40003.0=0 \text { ); } \\ & \text { unchangeable between: } \\ & 0,10000 \text { (if bit } 40003.0=1 \text { ) } \end{aligned}$ | Word | R |  | 40018 |
|  | Normalized measure of input 2 |  |  |  |  |
| IN2-FILTER | Between: 0, 6 | Word | R/W |  | 40005 |
|  | Filter applied to input 2 signal: $0=$ deactivated; $1=$ filtering min-value; 6=filtering max-value |  |  | / |  |
| IN 2-ESS | $\begin{aligned} & \pm 10000[\mathrm{mV}] \text { (if voltage), } \\ & \pm 20000[\mu \mathrm{~A}] \text { (if current) } \end{aligned}$ | Word | R/W |  | 40013 |
|  | Electrical Start Scale (E.S.S.) of input $2[\mathrm{mV}$ or $\mu \mathrm{A}]$ |  |  | 0 [mV] |  |
| IN 2-EES | $\begin{aligned} & \pm 10000[\mathrm{mV}] \text { (if voltage), } \\ & \pm 20000[\mathrm{AA}] \text { (if current) } \\ & \hline \end{aligned}$ | Word | R/W |  | 40009 |
|  | Electrical End Scale (E.E.S.) of input 2 [ mV or $\mu \mathrm{A}$ ] |  |  | $\begin{aligned} & 10000 \\ & {[\mathrm{mV}]} \end{aligned}$ |  |
| IN 2-NSS | $\pm 32000$ | Word | R/W |  | 40031 |
|  | Normalized Start Scale (N.S.S.) of input 2 |  |  | 0 |  |
| IN 2-NES | $\pm 32000$ | Word | R/W |  | 40027 |
|  | Normalized End Scale (N.E.S.) of input 2 |  |  | 10000 |  |
|  | INPUT 3 |  |  |  |  |
| IN 3 | Between: IN 3-NSS, IN 3- NES (if bit $40003.0=0$ ); unchangeable between: 0,10000 (if bit $40003.0=1$ ) | Word | R |  | 40019 |
|  | Normalized measure of input 3 |  |  |  |  |
| IN3-FILTER | Between: 0, 6 | Word | R/W |  | 40006 |
|  | Filter applied to input 3 signal: 0=deactivated; 1=filtering min-value; 6=filtering max-value |  |  | / |  |
| IN 3-ESS | $\pm 10000$ [mV] (if voltage), $\pm 20000[\mu \mathrm{~A}]$ (if current) | Word | R/W |  | 40014 |
|  | Electrical Start Scale (E.S.S.) of input 3 [mV or $\mu \mathrm{A}$ ] |  |  | 0 [mV] |  |
| IN 3-EES | $\pm 10000$ [mV] (if voltage), $\pm 20000[\mu \mathrm{~A}]$ (if current) | Word | R/W |  | 40010 |
|  | Electrical End Scale (E.E.S.) of input 3 [ mV or $\mu \mathrm{A}$ ] |  |  | $\begin{aligned} & 10000 \\ & {[\mathrm{mV}]} \end{aligned}$ |  |
| IN 3-NSS | $\pm 32000$ | Word | R/W |  | 40032 |
|  | Normalized Start Scale (N.S.S.) of input 3 |  |  | 0 |  |
| IN 3-NES | $\pm 32000$ | Word | R/W |  | 40028 |
|  | Normalized End Scale (N.E.S.) of input 3 |  |  | 10000 |  |
|  | INPUT 4 |  |  |  |  |
| IN 4 | $\begin{aligned} & \text { Between: IN 4-NSS, IN 4- } \\ & \text { NES (if bit } 40003.0=0 \text { ); } \\ & \text { unchangeable between: } \\ & 0,10000 \text { (if bit } 40003.0=1 \text { ) } \end{aligned}$ | Word | R |  | 40020 |
|  | Normalized measure of input 4 |  |  |  |  |
| IN4-FILTER | Between: 0, 6 | Word | R/W |  | 40007 |
|  | Filter applied to input 4 signal: $0=$ deactivated; 1 =filtering min-value; $6=$ filtering max-value |  |  | / |  |
| IN 4-ESS | $\pm 10000$ [mV] (if voltage), $\pm 20000[\mu \mathrm{~A}]$ (if current) | Word | R/W |  | 40015 |
|  | Electrical Start Scale (E.S.S.) of input 4 [mV or $\mu \mathrm{A}$ ] |  |  | 0 [mV] |  |
| IN 4-EES | $\pm 10000$ [mV] (if voltage), $\pm 20000[\mu \mathrm{~A}]$ (if current) | Word | R/W |  | 40011 |
|  | Electrical End Scale (E.E.S.) of input 4 [mV or $\mu \mathrm{A}$ ] |  |  | $\begin{aligned} & 10000 \\ & {[\mathrm{mV}]} \end{aligned}$ |  |
| IN 4-NSS | $\pm 32000$ | Word | R/W |  | 40033 |
|  | Normalized Start Scale (N.S.S.) of input 4 |  |  | 0 |  |
| IN 4-NES | $\pm 32000$ | Word | R/W |  | 40029 |
|  | Normalized End Scale (N.E.S.) of input 4 |  |  | 10000 |  |

## LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| ERR | Blinking light | The module has at least one of the errors described in RS485 <br> Registers table |
| RX | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
| TX | Blinking light | The module sent a data packet |

## Seneca Z-PC Line module: Z-8AI

The Z-8AI module acquires up to 8 single-ended input signals (voltage or current type) and it converts them to a digital format (normalized measure).

## General characteristics

$>$ It is possible to choose if each input is voltage or current type
$>$ It is possible to enable/disable each input
$>$ It is possible to change: the electrical start/end scale between $\pm 10 \mathrm{~V}, \pm 20 \mathrm{~mA}$, the normalized start/end scale between $\pm 32000$
$>$ Configuration of the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
> It is possible to switch automatically RS485 to RS232 or vice versa

## Features

| INPUT |  |
| :---: | :---: |
| Number | 8 |
| Resolution | 16 bits ( $15+1$ sign). If Electrical End-Scale (E.E.S.)<2.5V, resolution $=80 \mu \mathrm{~V}$; se 2.5 V <E.E.S. $<10 \mathrm{~V}$, resolution $=300 \mu \mathrm{~V}$ |
| Sampling time | Configurable between: 10, 20, 40 or 120 ms |
| Accuracy | Initial: $0.1 \%$ of E.E.S.. If E.E.S.<2.5V, accuracy $=2.5 \mathrm{mV}$; if $2.5 \mathrm{~V}<\mathrm{E} . \mathrm{E} . \mathrm{S} .<10 \mathrm{~V}$, accuracy $=10 \mathrm{mV}$ |
|  | Linearity: 0.03\% of E.E.S. (see initial accuracy) |
|  | Zero: 0.05\% of E.E.S. (see initial accuracy) |
|  | Thermal stability: < $100 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ |
|  | EMI: < 1\% |
| Protection | $\pm 30 \mathrm{Vdc}$ and 25mA |
| Voltage-type IN | Bipolar with E.S.S./E.E.S.(Electrical Start/End Scale) configurable between: $\pm 10 \mathrm{Vdc}$. Input impedance: $>100 \mathrm{k} \Omega$ |
| Current-type IN | Bipolar with E.S.S./E.E.S. configurable between: $\pm 20 \mathrm{~mA}$.Internal shunt:50 . To enable these shunts, use the «Analog inputs» DipSwitches |
| Internal supply Vaux | The \#4 and \#7 screw terminals: power 13 V to max180mA (figure10) |
| CONNECTIONS |  |
| RS485 interface | IDC10 connector |
| RS232 interface | Jack stereo 3.5mm connector: plugs into COM port |
| 1500 Vac ISOLATIONS |  |



| POWER SUPPLY |  |
| :--- | :--- |
| Supply voltage | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| Power <br> consumption | Min: $0.5 \mathrm{~W} ;$ Max: 3.5 W (to power 8 current loop) |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

## Input connections

It is possible to connect to the Z-8AI module two types of sensors:

- passive sensors, indicated with " $S$ " label (these sensors have to be supplied: by a module external voltage Vext or by the module internal voltage Vaux);
" active sensors, indicated with "voltage generator" or "current generator" label (these sensors have already been supplied).

In the following figure are shown five possible sensor connections.


|  | Acquired signal | Up to | Connection modality | Sensors power supply |
| :---: | :---: | :---: | :---: | :---: |
| A | $\begin{aligned} & \text { Voltage or } \\ & \text { current type } \end{aligned}$ | 8 passive sensors | 3-wire | Vaux (*) |
| B | Voltage type | 8 sensors as voltage generator | 2-wire | 1 |
| C | Current type | 8 sensors as current generator | 2-wire | 1 |
| D | Current-active type | 8 passive sensors | 2-wire | Vaux (*) |
| E | Currentpassive type | 8 passive sensors | 2-wire | Vext (connect "-" to GND) |

D-3 (*) $A$ and $D$ connections are possible only if the absorbed currents sum from all sensors: $<180 \mathrm{~mA}$.

## Dip-switches table

In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).


| INPUT TYPE (Dip-Switches: ANALOG INPUTS) |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Meaning |
|  |  |  |  |  |  |  |  | IN 1=voltage |
| $\bullet$ |  |  |  |  |  |  |  | IN 1=current |
|  |  |  |  |  |  |  |  | IN 2=voltage |
|  | $\bullet$ |  |  |  |  |  |  | IN 2=current |
|  |  |  |  |  |  |  |  | IN 3=voltage |
|  |  | $\bullet$ |  |  |  |  |  | IN 3=current |
|  |  |  |  |  |  |  |  | IN 4=voltage |
|  |  |  | $\bullet$ |  |  |  |  | IN 4=current |
| INPUT TYPE (Dip-Switches: ANALOG INPUTS) |  |  |  |  |  |  |  |  |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Meaning |
|  |  |  |  |  |  |  |  | IN 5=voltage |
|  |  |  |  | $\bullet$ |  |  |  | IN 5=current |
|  |  |  |  |  |  |  |  | IN 6=voltage |
|  |  |  |  |  | $\bullet$ |  |  | IN 6=current |
|  |  |  |  |  |  |  |  | IN 7=voltage |
|  |  |  |  |  |  | $\bullet$ |  | IN 7=current |
|  |  |  |  |  |  |  |  | IN 8=voltage |
|  |  |  |  |  |  |  | $\bullet$ | IN 8=current |

## RS485 Register table

| Name | Range | Interpretation of register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MachinelD | 1 | MSB, LSB | R |  | 40001 |
|  | Id_Code (Module ID) |  |  | 0x0E | Bit [15:8] |
|  | Ext_Rev (Module version) |  |  |  | Bit [7:0] |
| FWREV | $/$ Word R <br>    |  |  |  | 40062 |
|  |  |  |  |  |  |
| Status |  | Bit | R/W |  | 40002 |
|  | Generic error: $0=$ there isn't; $1=$ there is |  |  | 1 | Bit 15 |
|  | Configuration error: $0=$ there isn't; $1=$ there is |  |  | 1 | Bit 14 |
|  | Memory error (EEPROM): $0=$ there isn't; 1 =there is |  |  | 1 | Bit 13 |
|  | Save configuration in memory (EEPROM): 0=deactivated; 1=activated |  |  | / | Bit 12 |
|  | These bits aren't used |  |  | 1 | Bit [11:9] |
|  | Reset of module: 0=deactivated; 1=activated |  |  | 1 | Bit 8 |
|  | These bits aren't used |  |  | 1 | Bit [7:0] |
| Errors | 1 | Bit | R |  | 40063 |
|  | These bits aren't used |  |  | / | Bit[15:10] |
|  | Setting error (in memory): $0=$ there isn't; $1=$ there is |  |  | 1 | Bit 9 |
|  | Calibration error (in memory): $0=$ there isn't; $1=$ there is |  |  | 1 | Bit 8 |
|  | These bits aren't used |  |  | 1 | Bit [7:1] |
|  | ADC error: $0=$ there isn't; $1=$ there is |  |  | 1 | Bit 0 |
| Address Parity | / | MSB, LSB | R/W |  | 40012 |
|  | Address for RS485 (address of module/node if parameters are configurated by memory modality): from $0 \times 01=1$ to 0xFF=255 |  |  | 1 | Bit [15:8] |
|  | Parity for RS485: 0=there isn't; 1=even parity; 2=odd parity |  |  | 0 | Bit [7:0] |
| Baudrate Delay | I | MSB, LSB | R/W |  | 40013 |
|  | Baud-rate for RS485 (baud-rate of module/node if parameters are configurated by memory modality):$\begin{array}{ll} 0=4800 ; \quad 1=9600 ; \quad 2=19200 ; \quad 3=38400 ; \quad 4=57600 ; \\ 5=115200 ; 6=1200 ; 7=2400 \end{array}$ |  |  | 38400 | Bit [15:8] |
|  | Delay for RS485 (delay of communication response: it represents the number of the pauses(*) between the end of $R x$ message and the start of Tx message): from $0 \times 00=0$ to $0 x F F=255$ <br> (*) 1 pause $=6$ characters |  |  | 0 | Bit [7:0] |
|  | INPUT 1 |  |  |  |  |
| IN1 | Between: IN 1-NSS, IN 1NES | Word | R |  | 40003 |
|  | Normalized measure of input 1 |  |  | 1 |  |
| IN 1-ESS | $\begin{aligned} & \pm 10000 \text { [mV] (if voltage), } \\ & \pm 20000[\mu \mathrm{~A}] \text { (if current) } \\ & \hline \end{aligned}$ | Word | R/W |  | 40014 |
|  | Electrical Start Scale (E.S.S.) of input $1[\mathrm{mV}$ or $\mu \mathrm{A}]$ |  |  | 0 [mV] |  |



| IN 4-EES | $\pm 10000$ [mV] (if voltage), $\pm 20000[\mu \mathrm{~A}]$ (if current) | Word | R/W |  | 40033 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Electrical End Scale (E.E.S.) of input 4 [mV or $\mu \mathrm{A}$ ] |  |  | $\begin{aligned} & 10000 \\ & {[\mathrm{mV}]} \end{aligned}$ |  |
| IN 4-NSS | $\pm 32000$ | Word | R/W |  | 40034 |
|  | Normalized Start Scale (N.S.S.) of input 4 |  |  | 0 |  |
| IN 4-NES | $\pm 32000$ | Word | R/W |  | 40035 |
|  | Normalized End Scale (N.E.S.) of input 4 |  |  | 10000 |  |
| IN 4-FLAGS | / | Bit | R/W |  | 40037 |
|  | See IN 1-FLAGS register (40019) |  |  | 1 |  |
|  | INPUT 5 |  |  |  |  |
| IN 5 | Between: IN 5-NSS, IN NES | Word | R |  | 40007 |
|  | Normalized measure of input 5 |  |  | 1 |  |
| IN 5-ESS | $\pm 10000$ [mV] (if voltage), $\pm 20000[\mu \mathrm{~A}]$ (if current) | Word | R/W |  | 40038 |
|  | Electrical Start Scale (E.S.S.) of input $5[\mathrm{mV}$ or $\mu \mathrm{A}]$ |  |  | 0 [mV] |  |
| IN 5-EES | $\pm 10000$ [mV] (if voltage), $\pm 20000[\mu \mathrm{~A}]$ (if current) | Word | R/W |  | 40039 |
|  | Electrical End Scale (E.E.S.) of input 5 [ mV or $\mu \mathrm{A}$ ] |  |  | $\begin{aligned} & 10000 \\ & {[\mathrm{mV}]} \\ & \hline \end{aligned}$ |  |
| IN 5-NSS | $\pm 32000$ | Word | R/W |  | 40040 |
|  | Normalized Start Scale (N.S.S.) of input 5 |  |  | 0 |  |
| IN 5-NES | $\pm 32000$ | Word | R/W |  | 40041 |
|  | Normalized End Scale (N.E.S.) of input 5 |  |  | 10000 |  |
| IN 5-FLAGS | 1 | Bit | R/W |  | 40043 |
|  | See IN 1-FLAGS register (40019) |  |  | 1 |  |
|  | INPUT 6 |  |  |  |  |
| IN 6 |  |  |  |  | 40008 |
|  |  |  |  | 1 |  |
| IN 6-ESS | $\begin{aligned} & \pm 10000[\mathrm{mV}] \text { (if voltage), } \\ & \pm 20000[\mu \mathrm{~A}] \text { (if current) } \end{aligned}$ | Word | R/W |  | 40044 |
|  | Electrical Start Scale (E.S.S.) of input $6[\mathrm{mV}$ or $\mu \mathrm{A}]$ |  |  | 0 [mV] |  |
| IN 6-EES | $\pm 10000$ [mV] (if voltage), $\pm 20000[\mu \mathrm{~A}]$ (if current) | Word | R/W |  | 40045 |
|  | Electrical End Scale (E.E.S.) of input 6 [ mV or $\mu \mathrm{A}$ ] |  |  | $\begin{aligned} & 10000 \\ & {[\mathrm{mV}]} \end{aligned}$ |  |
| IN 6-NSS | $\pm 32000$ | Word | R/W |  | 40046 |
|  | Normalized Start Scale (N.S.S.) of input 6 |  |  | 0 |  |
| IN 6-NES | $\pm 32000$ | Word | R/W |  | 40047 |
|  | Normalized End Scale (N.E.S.) of input 6 |  |  | 10000 |  |
| IN 6-FLAGS | / | Bit | R/W |  | 40049 |
|  | See IN 1-FLAGS register (40019) |  |  | 1 |  |
|  | INPUT 7 |  |  |  |  |
| IN 7 | Between: IN 7-NSS, IN NES | Word | R |  | 40009 |
|  | Normalized measure of input 7 |  |  | 1 |  |
| IN 7-ESS | $\pm 10000$ [mV] (if voltage), $\pm 20000$ [ $\mu \mathrm{A}$ ] (if current) | Word | R/W |  | 40050 |
|  | Electrical Start Scale (E.S.S.) of input 7 [mV or $\mu \mathrm{A}$ ] |  |  | 0 [mV] |  |
| IN 7-EES | $\begin{aligned} & \pm 10000[\mathrm{mV}] \text { (if voltage), } \\ & \pm 20000[\mu \mathrm{~A}] \text { (if current) } \end{aligned}$ | Word | R/W |  | 40051 |
|  | Electrical End Scale (E.E.S.) of input 7 [ mV or $\mu \mathrm{A}$ ] |  |  | $\begin{aligned} & 10000 \\ & {[\mathrm{mV}]} \end{aligned}$ |  |
| IN 7-NSS | $\pm 32000$ | Word | R/W |  | 40052 |
|  | Normalized Start Scale (N.S.S.) of input 7 |  |  | 0 |  |
| IN 7-NES | $\pm 32000$ | Word | R/W |  | 40053 |
|  | Normalized End Scale (N.E.S.) of input 7 |  |  | 10000 |  |


| IN 7-FLAGS | / | Bit | R/W |  | 40055 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | See IN 1-FLAGS register (40019) |  |  | / |  |
| INPUT 8 |  |  |  |  |  |
| IN 8 | Between: IN 8-NSS, IN 8NES | Word | R |  | 40010 |
|  | Normalized measure of input 8 |  |  | 1 |  |
| IN 8-ESS | $\pm 10000 \text { [mV] (if voltage), }$ $\pm 20000[\mu \mathrm{~A}] \text { (if current) }$ | Word | R/W |  | 40056 |
|  | Electrical Start Scale (E.S.S.) of input 8 [mV or $\mu \mathrm{A}$ ] |  |  | 0 [mV] |  |
| IN 8-EES | $\begin{aligned} & \pm 10000[\mathrm{mV}] \text { (if voltage), } \\ & \pm 20000[\mu \mathrm{~A}] \text { (if current) } \\ & \hline \end{aligned}$ | Word | R/W |  | 40057 |
|  | Electrical End Scale (E.E.S.) of input 8 [mV or $\mu \mathrm{A}]$ |  |  | $\begin{aligned} & 10000 \\ & {[\mathrm{mV}]} \end{aligned}$ |  |
| IN 8-NSS | $\pm 32000$ | Word | R/W |  | 40058 |
|  | Normalized Start Scale (N.S.S.) of input 8 |  |  | 0 |  |
| IN 8-NES | $\pm 32000$ | Word | R/W |  | 40059 |
|  | Normalized End Scale (N.E.S.) of input 8 |  |  | 10000 |  |
| IN 8-FLAGS | / | Bit | R/W |  | 40061 |
|  | See IN 1-FLAGS register (40019) |  |  | / |  |

## LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| ERR | Blinking light | The module has at least one of the errors described in RS485 <br> Registers table |
| RX | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
| TX | Blinking light | The module sent a data packet |

## Seneca Z-PC Line module: Z-3A0

The Z-3AO module supplies 3 single-ended analog signals (voltage or current type).

## General characteristics

$>$ It is possible to choose if each output is voltage or current type
$>$ It is possible to change the electrical start/end scale between $\pm 10 \mathrm{~V}, 0-20 \mathrm{~mA}$
$>$ It's possible to manage the electrical values (for each output) if the interval time of RS485-bus communication failure is greater than a configurable time (see Timeout register)
$>$ Output protection against the overvoltage surge transients and short-circuits
$>$ Configuration of the module (node) address, baud-rate and output-type (voltage or current) by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
> It is possible to switch automatically RS485 to RS232 or vice versa

## Features

| OUTPUT |  |
| :---: | :---: |
| Number | 3 |
| Resolution | 12 bit. If output is voltage-type, resolution $=5 \mathrm{mV}$; if output is current-type, resolution $=5 \mu \mathrm{~A}$ |
| Response time | < 50 ms (step response, 10\%-90\%) |
| Accuracy | Initial: 0.1\% of Electrical End Scale (E.E.S.) |
|  | Linearity: 0.05\% of E.E.S. |
|  | Calibration: 0.2\% of E.E.S. |
|  | Thermal stability: $0.01 \% /{ }^{\circ} \mathrm{C}$ |
|  | EMI: < 1\% |
| Protection | Protection against the overvoltage surge transients by transient suppressor ( $400 \mathrm{~W} / \mathrm{ms}$ ); protection against the output short-circuits by internal series PTC |
| Voltage-type OUT | Bipolar with E.S.S./E.E.S.(Electrical Start/End Scale) configurable between: $\pm 10 \mathrm{Vdc}$. Output impedance: $>600 \Omega$ |
| Current-type OUT | Unipolar with E.S.S./E.E.S.(Electrical Start/End Scale) configurable between: 0-20mA. Output impedance: $<600 \Omega$ |
| Internal supply Vaux | The \#4 and \#7 screw terminals: power 13V to max180mA |
| CONNECTIONS |  |
| RS485 interface | IDC10 connector for DIN 46277 rail (back-side panel) or (alternative) the screw terminals: 4(GND), 5(B), 6(A) |
| RS232 interface | Jack stereo 3.5mm connector:plugs into COMport(front-side panel) |
| 1500 Vac ISOLATIONS |  |
|  | Between: power supply, ModBUS RS485, analog output |



POWER SUPPLY

| Supply voltage | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Power <br> consumption | Min: $0.5 \mathrm{~W} ; \operatorname{Max}: 3.2 \mathrm{~W}$ |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

## Output connections

The 3 analog outputs (voltage or current type) are avaliable at the screw terminals 7, 8, 9 and their refer to the equipotential screw terminals 10, 11, 12 (GND) (connected internally).


## Dip-switches table

In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).


| RS485 TERMINATOR (Dip-Switch: TERM) |  |
| :--- | :--- |
| 1 | Meaning |
|  | RS485 terminator disabled |
| $\bullet$ | RS485 terminator enabled |

## OUTPUT TYPE (Dip-Switches: ANALOG OUTPUT)

| 1 | 2 | 3 | Meaning | 1 | 2 | 3 | Meaning | 1 | 2 | 3 | Meaning |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | OUT1=voltage |  |  |  | OUT2=voltage |  |  |  | OUT3=voltage |
| $\bullet$ |  |  | OUT1=current |  | $\bullet$ |  | OUT2=current |  |  | $\bullet$ | OUT3=current |

## RS485 Register table



|  | Fault error (there is if the interval time of RS485-bus communication failure is greater than Timeout/10 [sec]): $0=$ there isn't; $1=$ there is |  |  | / | Bit 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | These bits aren't used |  |  | / | Bit [1:0] |
| Eprflag | / | Bit | R/W |  | 40004 |
|  | These bits aren't used |  |  | 1 | Bit[15:8] |
|  | Module behavior if there is a fault error: $0=$ no operation; 1=the module overwrites the content of the register: 40069 in 40005,40070 in 40006, 40071 in 40007). See register 40003 |  |  | 0 | Bit 7 |
|  | These bits aren't used |  |  | 1 | Bit [6:5] |
|  | Parity for RS485: $0=$ even parity; $1=$ odd parity |  |  | 0 | Bit 4 |
|  | Parity for RS485: 0=deactivated; 1=activated |  |  | 0 | Bit 3 |
|  | Delay for RS485 (delay of communication response: pauses between the end of Rx message and the start of Tx message): $0=$ there isn't; $1=$ there is |  |  | 0 | Bit 2 |
|  | These bits aren't used |  |  | / | Bit [1:0] |
| Baudrate Address | $\begin{aligned} & \text { Address: from } 0 \times 01=1 \text { to } \\ & 0 \times F F=255 \end{aligned}$ | MSB, LSB | R/W |  | 40002 |
|  | Baud-rate for RS485 (baud-rate of module/node ifparameters are configurated by memory modality): $0=4800 ; \quad 1=9600 ; \quad 2=19200 ; \quad 3=38400 ; \quad 4=57600 ;$ 5=115200; $6=1200 ; 7=2400$ |  |  | 38400 | Bit [15:8] |
|  | Address for RS485 (address of module if parameters are configurated by memory modality) |  |  | 1 | Bit [7:0] |
| Command | OxBAB0, 0xCACO, $0 \times C 1 A 0$Save configuration in memory (EEPROM), ifreg.40009=0xBAB0The module writes the Dip-Switches-state in reg.40010, ifreg.40009 $=0 \times C A C 0$Module reset, if reg. $40009=0 \times C 1$ A0 |  |  |  | 40009 |
|  |  |  |  | 0 |  |
| Command aux |  | Bit | R |  | 40010 |
|  | These bits aren't used |  |  | / | Bit [15:11] |
|  | Dip-Switch "Analog Output 3" state. It corresponds to the selected output3-type. Bit40010.10=0 corresponds to the current-type output, bit40010.10=1 corresponds to the voltage-type output (if reg.40009=0xCAC0) |  |  | 1 | Bit 10 |
|  | Dip-Switch "Analog Output 2" state. It corresponds to the selected output2-type. Bit40010.9=0 corresponds to the current-type output, bit40010.9=1 corresponds to the voltage-type output (if reg.40009=0xCAC0) |  |  | 1 | Bit 9 |
|  | Dip-Switch "Analog Output 1" state. It corresponds to the selected output1-type. Bit40010.8=0 corresponds to the current-type output, bit40010.8=1 corresponds to the voltage-type output (if reg.40009=0xCAC0) |  |  | 1 | Bit 8 |
|  | Dip-Switches "DipSwitchStatus [1:2]" state. They correspond to the module baud-rate (if reg. $40009=0 \times C A C 0$ ) |  |  | 1 | Bit [7:6] |
|  | Dip-Switches "DipSwitchStatus [3:8]" state. They correspond to the module address (if reg.40009=0xCAC0) |  |  | 1 | Bit [5:0] |
| Timeout | Between: $10(=1 \mathrm{msec})$; $2500(=250 \mathrm{msec})$ | Word | R/W |  | 40003 |
|  | Timeout [sec/10] (if bit40004.7=1: it is interval time of RS485-bus communication failure, after which the bit40008.2 switches to 1 and the module overwrites the content of the register: 40069 in 40005,40070 in 40006, 40071 in 40007) |  |  | $\begin{array}{\|l\|} \hline 100 \\ (=10 \mathrm{sec}) \end{array}$ |  |


| OUTPUT 1 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OUT1 | Between:-10000; 10000 (if voltage), $0 ; 10000$ (if current) | Word | R/W |  | 40005 |
|  | Normalized value of output1. The corresponding electric value is the voltage or current-type value available at the screw terminals 7-GND (see figure 1 and 2) |  |  | OUT1 Fault |  |
| $\begin{aligned} & \text { OUT1-mV } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Between: }-11000[\mathrm{mV}] ; \\ & +11000[\mathrm{mV}] \end{aligned}$ | Word | R/W |  | 40012 |
|  | Electrical value of output 1 [mV] corresponding to the normalized value OUT1=0 (if output 1 is voltage-type) (see figure 1 and 2) |  |  | 0 [mV] |  |
| $\begin{aligned} & \text { OUT1-mV } \\ & 10000 \end{aligned}$ | $\begin{array}{ll} \begin{array}{l} \text { Between: } \\ +11000[\mathrm{mV}] \end{array} & -11000[\mathrm{mV}] ; \\ \hline \end{array}$ | Word | R/W |  | 40013 |
|  | Electrical value of output 1 [mV] corresponding to the normalized value OUT1=10000 (if output 1 is voltagetype). This value coincides with the Electrical End Scale (E.E.S.) of the output1 (see figure 1 and 2) |  |  | $\begin{aligned} & 10000 \\ & {[\mathrm{mV}]} \end{aligned}$ |  |
| $\begin{aligned} & \text { OUT1- } \mu \mathrm{A} \\ & 0 \end{aligned}$ | Between: $0[\mu \mathrm{~A}] ;+22000[\mu \mathrm{~A}]$ | Word | R/W |  | 40018 |
|  | Electrical value $1[\mu \mathrm{~A}]$ corresponding to the normalized value OUT1=0 (if output 1 is current-type) (see figure 1 and 2) |  |  | 4000 [ $\mu \mathrm{A}$ ] |  |
| $\begin{aligned} & \text { OUT1- } \mu \mathrm{A} \\ & 10000 \end{aligned}$ | Between: $0[\mu \mathrm{~A}] ;+22000[\mu \mathrm{~A}]$ | Word | R/W |  | 40019 |
|  | Electrical value $1[\mu \mathrm{~A}]$ corresponding to the normalized value OUT1=10000 (if output 1 is current-type). This value coincides with the Electrical End Scale (E.E.S.) of the output1 (see figure 1 and 2) |  |  | $\begin{aligned} & 20000 \\ & {[\mu \mathrm{~A}]} \end{aligned}$ |  |
| OUT1 Fault | Between:-10000; 10000 (if voltage), $0 ; 10000$ (if current) | Word | R/W |  | 40069 |
|  | Normalized fault value of output 1. The corresponding electric value is the voltage or current-type value available at the screw terminals 7-GND (see figure 1 and 2). This register is overwritten in the reg.40005: if the module is connected to the RS485 bus communication (to initialize it) or if: bit 40008.2=1 and bit40004.7=1 |  |  | 0 |  |
|  | OUTPUT 2 |  |  |  |  |
| OUT2 | Between:-10000; 10000 (if voltage), $0 ; 10000$ (if current) | Word | R/W |  | 40006 |
|  | Normalized value of output2. The corresponding electric value is the voltage or current-type value available at the screw terminals 8-GND (see figure 1 and 2) |  |  | OUT1 Fault |  |
| $\begin{aligned} & \text { OUT2-mV } \\ & 0 \end{aligned}$ | Between: $+11000[\mathrm{mV}]$ | Word | R/W |  | 40014 |
|  | Electrical value of the output 2 [ mV ] corresponding to the normalized value OUT2=0 (if output 2 is voltage-type) (see figure 1 and 2) |  |  | $0[\mathrm{mV}$ ] |  |
| $\begin{aligned} & \text { OUT2-mV } \\ & 10000 \end{aligned}$ | $\begin{array}{ll} \hline \begin{array}{l} \text { Between: } \\ +11000[\mathrm{mV}] \end{array} & -11000[\mathrm{mV}] ; \\ \hline \end{array}$ | Word | R/W |  | 40015 |
|  | Electrical value of output $2[\mathrm{mV}$ ] corresponding to the normalized value OUT2 $=10000$ (if output 2 is voltagetype). This value coincides with the Electrical End Scale (E.E.S.) of the output 1 (see figure 1 and 2 ) |  |  | $\begin{aligned} & 10000 \\ & {[\mathrm{mV}]} \end{aligned}$ |  |
| $\begin{aligned} & \text { OUT2- } \mu \mathrm{A} \\ & 0 \end{aligned}$ | Between: $0[\mu \mathrm{~A}] ;+22000[\mu \mathrm{~A}]$ | Word | R/W |  | 40020 |
|  | Electrical value $2[\mu \mathrm{~A}]$ corresponding to the normalized value OUT2=0 (if output 2 is current-type) (see figure 1 and 2) |  |  | $4000[\mu \mathrm{~A}]$ |  |


| OUT2- $\mu \mathrm{A}$ | Between: $0[\mu \mathrm{~A}] ;+22000[\mu \mathrm{~A}]$ | Word | R/W |  | 40021 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Electrical value $2[\mu \mathrm{~A}]$ corresponding to the normalized value OUT2=10000 (if output 2 is current-type). This value coincides with the Electrical End Scale (E.E.S.) of the output2 (see figure 1 and 2) |  |  | $\begin{aligned} & 20000 \\ & {[\mu \mathrm{~A}]} \end{aligned}$ |  |
| OUT2 Fault | Between: -10000; 10000 (if voltage), $0 ; 10000$ (if current) | Word | R/W |  | 40070 |
|  | Normalized fault value of output 2. The corresponding electric value is the voltage or current-type value available at the screw terminals 8 -GND (see figure 1 and 2). This register is overwritten in the reg.40006: if the module is connected to the RS485 bus communication (to initialize it) or if: bit 40008.2=1 and bit40004.7=1 |  |  | 0 |  |
|  | OUTPUT3 |  |  |  |  |
| OUT3 | Between:-10000; 10000 (if voltage), $0 ; 10000$ (if current) | Word | R/W |  | 40007 |
|  | Normalized value of output3. value is the voltage or current screw terminals 9-GND (see fig | The corr type val ure 1 and | electric at the | OUT3 Fault |  |
| $\begin{array}{\|l} \hline \text { OUT3-mV } \\ 0 \end{array}$ | Between: <br> $+11000[m V]$ $-11000[m V] ;$ | Word | R/W |  | 40016 |
|  | Electrical value of the output $3[\mathrm{mV}]$ corresponding to the normalized value OUT $3=0$ (if output 3 is voltage-type) (see figure 1 and 2) |  |  | O[mV] |  |
| $\begin{aligned} & \hline \text { OUT3-mV } \\ & 10000 \\ & \hline \end{aligned}$ | Between: <br> $+11000[m V]$ $-11000[m V] ;$ | Word | R/W |  | 40017 |
|  | Electrical value of output 3 [ mV ] corresponding to the normalized value OUT $1=10000$ (if output 3 is voltagetype). This value coincides with the Electrical End Scale (E.E.S.) of the output3 (see figure 1 and 2) |  |  | $\begin{aligned} & 10000 \\ & {[\mathrm{mV}]} \end{aligned}$ |  |
| $\begin{array}{\|l} \hline \text { OUT3- } \mu \mathrm{A} \\ 0 \\ \hline \end{array}$ | Between: $0[\mu \mathrm{~A}] ;+22000[\mu \mathrm{~A}]$ | Word | R/W |  | 40022 |
|  | Electrical value $3[\mu \mathrm{~A}]$ corresponding to the normalized value OUT3=0 (if output 3 is current-type) (see figure 1 and 2) |  |  | 4000 [ $\mu \mathrm{A}$ ] |  |
| $\begin{aligned} & \text { OUT3- } \mu \mathrm{A} \\ & 10000 \end{aligned}$ | Between: $0[\mu \mathrm{~A}] ;+22000[\mu \mathrm{~A}]$ | Word | R/W |  | 40023 |
|  | Electrical value $3[\mu \mathrm{~A}]$ corresponding to the normalized value OUT $3=10000$ (if output 3 is current-type). This value coincides with the Electrical End Scale (E.E.S.) of the output3 (see figure 1 and 2) |  |  | $\begin{aligned} & 20000 \\ & {[\mu \mathrm{~A}]} \end{aligned}$ |  |
| OUT3 Fault | Between:-10000; 10000 (if voltage), $0 ; 10000$ (if current) | Word | R/W |  | 40071 |
|  | Normalized fault value of output 3. The corresponding electric value is the voltage or current-type value available at the screw terminals $9-G N D$ (see figure 1 and 2). This register is overwritten in the reg.40007: if the module is connected to the RS485 bus communication (to initialize it) or if: bit 40008.2=1 and bit $40004.7=1$ |  |  | 0 |  |

[^1]In the following lines is described the register configuration of the output1 to obtain the desired electrical value; the register configuration of the output 2 and 3 is similar.

To configure the analog output 1 in voltage (current)-type, execute the following operations:

1) configure the register "OUT1-mV 0 " ("OUT1- $\mu \mathrm{A} 0$ ") corresponding to the normalized value $=0$ and "OUT1-mV 10000" ("OUT1- $\mu \mathrm{A}$ 10000") corresponding to the normalized value=10000 (figure 1);
2) configure the register OUT1: it is the normalized value corresponding to the desired electrical value available at the screw terminals ( mV or $\mu \mathrm{A}$ ) (figure 1);


Fig. 1 - Description of output configuration (step 1 and step 2)

D -3 The content of the register "OUT1-mV 10000" ("OUT1- $\mu \mathrm{A}$ 10000") coincides with the Electrical End Scale (E.E.S.); the Electrical Start Scale (E.S.S.) is the electrical value corresponding to the normalized value $=-10000$, and it isn't a register.
3) it's possible to read the electrical value through the screw terminals (7-GND for output 1) corresponding to the normalized value=OUT1. If the output is current-type and if OUT1=[-10000;0], E.S.S. $=0 \mu \mathrm{~A}$.


Fig. 2 - Description of output configuration (step 3)

## LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The module power is on |
| ERR | Blinking light | The module has at least one of the errors described in RS485 <br> Registers table |
|  | Constant light | Module failure or there is a fault error (bit40008.2=1) |
|  | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
| TX | Blinking light | The module sent a data packet |

## Seneca Z-PC Line module: Z-4TC

The Z-4TC module acquires up to 4 single-ended signals (voltage-type, from the: signal generator or thermocouple) and it converts them to a digital format (normalized measure).

## General characteristics

> Capture of each voltage-type input from the: generator or thermocouple
$>$ Configuration of a filter applied to each input signal
$>$ It is possible to disable the automatic detection of thermocouple interruptions (to decrease the measure error of the acquired signals from the thermocouples)
$>$ Configuration of the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
> It is possible to switch automatically RS485 to RS232 or vice versa

## Features

| INPUT |  |
| :---: | :---: |
| Number | 4 |
| Resolution | 16 bits (15+1 sign). If input is acquired: from the generator, resolution $=5 \mu \mathrm{~V}$; from the thermocouple, resolution $=0.1^{\circ} \mathrm{C}$ |
| Sampling time | Configurable between: 120 ms or 60 ms |
| Filter | Configurable between: 0 (no filter is applied), from $1(\mathrm{~min})$ to 6(max)(*) |
| Accuracy | Initial: 0.1\% of E.E.S.(Electrical End Scale) |
|  | Linearity: $0.05^{\circ} \mathrm{C}$ (if TC J, TC K); $0.04^{\circ} \mathrm{C}$ (if TC N, TC T); $0.03^{\circ} \mathrm{C}$ (if TC B); $0.02^{\circ} \mathrm{C}$ (if TC E, TC S, TC R) |
|  | Thermal stability: < $50 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ |
|  | EMI: < 1\% |
|  | Cold-junction compensation (for TC-type input): $<2^{\circ} \mathrm{C}\left(0-50^{\circ} \mathrm{C}\right.$ ) |
| Protection | $\pm 30 \mathrm{Vdc}$ and 25mA |
| Voltage-type IN (from the generator) | Bipolar with E.S.S./E.E.S.(Electrical Start/End Scale) unchangeable between: $\pm 160 \mathrm{mV}$. Input impedance: $>10 \mathrm{M} \Omega$ |
| Voltage-type IN (from the thermocouple) | TC-type: J, K, R, S, T, B, E, N. Automatic detection if a TC interruption occurs: if this option is enabled, test current:<200nA. Input impedance: > $10 \mathrm{M} \Omega$ |
| CONNECTIONS |  |
| RS485 interface | IDC10 connector for DIN 46277 rail (back-side panel) or (alternative) the screw terminals: 4(GND), 5(B), 6(A) |
| RS232 interface | Jack stereo 3.5mm connector: plugs into COM port |
| 1500 Vac ISOLATIONS |  |
|  | Between: power supply, ModBUS RS485, analog input |



POWER SUPPLY

| Supply voltage | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Power <br> consumption | Min: $0.5 \mathrm{~W} ; \operatorname{Max}: 1 \mathrm{~W}$ |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

## Input connections


$11-3$ The term «NTC 1-2» means the NTC sensor related to the thermocouple 1 and 2 coldjunctions, instead the term «NTC 3-4» means the NTC sensor related to the thermocouple 3 and 4 cold-junctions.

The four voltage-type analog inputs (from the signal generator or from the thermocouple) refer to the ground GND; GND can be found at the screw terminals 7 and 12 (they are equipotentials because internally connected).

To decrease the signal-acquisition errors due to noise effects, short-circuit each unused TC-type input (screw terminals 8, 9, 10 or 11) to the GND (equipotential screw terminals: 7 or 12).

In the following figure are shown the cable colors for each type of thermocouple.

| THERMOCOUPLE | ALLOY | $\begin{gathered} \text { ANSI } \\ \text { MC96.1 } \\ \text { (USA) } \end{gathered}$ |  | DIN43710 <br> (D) |  | IEC 584-3 (EUROPE) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | - | + | - | + | - | + |
| TC J | $\mathrm{Fe}-\mathrm{Co}$ | red | white | blue | red | white | black |
| TC K | $\mathrm{Cr}-\mathrm{Al}$ | red | yellow | green | red | white | green |
| TC R | Pt13\%Rh-Pt | red | black | white | red | white | orange |
| TC S | Pt10\%Rh-Pt | red | black | white | red | white | orange |
| TC T | Cu-Co | red | blue | brown | red | white | brown |
| TC E | Cr-Co | red | purple | black | red | white | purple |
| TC B | Pt30\%Rh-Pt6\%Rh | red | grey | red | grey | white | grey |
| TC N | Nicrosil-Nisil | red | brown | / | / | white | pink |

## Dip-switches table

In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

BAUD-RATE (Dip-Switches: DIP-SWITCH STATUS)


The module is designed to configure each input depending on whether the voltage-type signal is acquired from the: generator or thermocouple. In particular the input scale range values, for thermocouple-type input selected, are shown in the following table.

| TC-type | Scale range | TC-type | Scale range |
| :--- | :--- | :--- | :--- |
| J | $-210^{\circ} \mathrm{C} . .1200^{\circ} \mathrm{C}$ | S | $-50^{\circ} \mathrm{C} . .1768^{\circ} \mathrm{C}$ |
| K | $-200^{\circ} \mathrm{C} . .1372^{\circ} \mathrm{C}$ | R | $-50^{\circ} \mathrm{C} . .1768^{\circ} \mathrm{C}$ |
| E | $-200^{\circ} \mathrm{C} .1000^{\circ} \mathrm{C}$ | B | $250^{\circ} \mathrm{C} .1820^{\circ} \mathrm{C}$ |
| N | $-210^{\circ} \mathrm{C} . .1300^{\circ} \mathrm{C}$ | T | $-200^{\circ} \mathrm{C} . .400^{\circ} \mathrm{C}$ |

## RS485 Register table

| Name | Range $\quad$Interpretation of <br> register R/W | Default | Address |
| :---: | :---: | :---: | :---: |
| MachinelD | MSB, LSB R |  | 40001 |
|  | Id_Code (Module ID) | 0x06 | Bit [15:8] |
|  | Ext_Rev (Module version) |  | Bit [7:0] |
| FWREV | / ${ }^{\text {l }}$ Word $\mathrm{R}^{\text {a }}$ |  | 40017 |
|  | Firmware Code |  |  |
| Status | Bit $\quad$ R/W |  | 40012 |
|  | Input 4 burn-out error (if TC-type input): $0=$ there isn't; 1=there is | 1 | Bit 15 |
|  | Input 3 burn-out error (if TC-type input): $0=$ there isn't; $1=$ there is | / | Bit 14 |
|  | Input 2 burn-out error (if TC-type input): $0=$ there isn't; $1=$ there is | 1 | Bit 13 |
|  | Input 1 burn-out error (if TC-type input): $0=$ there isn't; $1=$ there is | / | Bit 12 |
|  | Input 4 temperature-acquired error (if TC-type input): $0=$ there isn't; $1=$ there is | / | Bit 11 |
|  | Input 3 temperature-acquired error (if TC-type input): $0=$ there isn't; $1=$ there is | 1 | Bit 10 |
|  | Input 2 temperature-acquired error (if TC-type input): $0=$ there isn't; $1=$ there is | / | Bit 9 |
|  | Input 1 temperature-acquired error (if TC-type input): $0=$ there isn't; $1=$ there is | / | Bit 8 |
|  | Save configuration in memory (EEPROM): $0=$ deactivated; $1=$ activated | 0 | Bit 7 |
|  | These bits aren't used | 1 | Bit [6:4] |
|  | Configuration error: $0=$ there isn't; $1=$ there is | 1 | Bit 3 |
|  | Data-configuration acquisition error: $0=$ there isn't; $1=$ there is | / | Bit 2 |
|  | Generic error: 0=there isn't; 1=there is (bit 40012.1=1 corresponds to LED ERR=blinking light) | / | Bit 1 |
|  | Reset of module: $0=$ deactivated; $1=$ activated | 0 | Bit 0 |
| Errors |  |  | 40019 |
|  | These bits aren't used | 1 | Bit[15:12] |
|  | Zero ADC error: $0=$ there isn't; 1 =there is | 1 | Bit 11 |
|  | This bit isn't used | 1 | Bit 10 |



| IN3-FILTER | Between: 0,6 | Word | R/W |  | 40010 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Filter applied to input 3 signal: $0=$ deactivated; $1=$ filtering min-value; 6=filtering max-value |  |  | 0 |  |
| INPUT 4 |  |  |  |  |  |
| IN4-Type | Between:0,8 | Word | R/W |  | 40007 |
|  | Input 4-type: $0=$ from the voltage generator $( \pm 160 \mathrm{mV})$; 1=from TC J; 2=from TC K; 3=from TC R; 4=from TC S; 5= from TC T; 6=from TC B; 7=from TC E; 8=from TC N |  |  | 0 |  |
| IN 4 | Between: $\pm 32$ | Word | R |  | 40016 |
|  | Normalized measure of input 4 (1bit=5 $\mu \mathrm{V}$ if input from the voltage generator; $1 \mathrm{bit}=0.1^{\circ} \mathrm{C}$ if input from the TC) |  |  | / |  |
| IN4-FILTER | Between: 0, 6 | Word | R/W |  | 40011 |
|  | Filter applied to input 4 signal: $0=$ deactivated; 1 =filtering min-value; $6=$ filtering max-value |  |  | 0 |  |

(*) Corrispondence between filter-levels and filter time constants: 1=1[sec]; 2=2[sec]; 3=5[sec]; $4=10[\mathrm{sec}] ; 5=20[\mathrm{sec}] ; 6=60[\mathrm{sec}]$.

## LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| ERR | Blinking light | The module has at least one of the errors described in RS485 <br> Registers table |
|  | Constant light | Module failure |
|  | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
| TX | Blinking light | The module sent a data packet |
|  | Constant light | Module failure |

## Seneca Z-PC Line module: Z-8TC

The Z-8TC module acquires up to 8 single-ended signals (voltage-type, from the: signal generator or thermocouple) and it converts them to a digital format (normalized measure).

## General characteristics

$>$ It is possible to choose if measure is voltage $(\mathrm{mV})$ or temperature $\left({ }^{\circ} \mathrm{C}\right)$ type, for each couple of input signals: IN1 and IN2, IN3 and IN4, IN5 and IN6, IN7 and IN8
$>$ It is possible to enable/disable each input
> Configuration of a filter applied to each couple of input signals
$>$ It is possible to enable/disable cold-junction compensation, for each couple of input signals
$>$ It is possible to configure module (node) address and baud-rate by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
> It is possible to switch automatically RS485 to RS232 or vice versa

## Features

| INPUT |  |
| :---: | :---: |
| Number | 8 |
| Resolution | 14bits (if filter=0-1); 15 bits (if filter=2-7) |
| Sampling frequency | Configurable between: 48 Hz (if the filter is deactivated), 20 Hz (if filter=1), 11 Hz (if filter=2-7) |
| Rejection | 50 Hz or 60 Hz |
| Filter (0-7) | IIR and FIR; configurable between: 0 (deactivated), from $1(\mathrm{~min})$ to 7(max) |
| Accuracy | Initial: 0.1\% of E.E.S. (Electrical End Scale) |
|  | Thermal stability: < $100 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ |
|  | EMI: < 1\% |
| Protection | This module provides inputs protection against the ESD (up to 4 kV ) |
| Voltage-type IN (from the thermocouple) | Bipolar with E.S.S./E.E.S. (Electrical Start/End Scale) unchangeable between: -10.1mV..+81.4mV. TC-type: J, K, R, S, T, B, E,N. Automatic detection if a TC interruption occurs: if this option is enabled, test current:<50nA. Input impedance: $>10 \mathrm{M} \Omega$ |


| CONNECTIONS |  |
| :--- | :--- |
| RS485 interface | IDC10 connector for DIN 46277 rail (back-side panel) |
| RS232 interface | Jack stereo 3.5mm connector: plugs into COM port |
| 1500 Vac ISOLATIONS |  |
|  | Between: power supply, ModBUS RS485/RS232, inputs 1/2, inputs <br> $3 / 4$, inputs 5/6, inputs 7/8 |



POWER SUPPLY

| Supply voltage | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Power <br> consumption | Max: 0.6 W |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

## Input connections

The Z-8TC module has a digital thermometer (DT sensor) internally to compensate the coldjunction effect, if a thermocouple is connected to input.
$1[-3$ To decrease the signal-acquisition errors due to noise effects, short-circuit each unused TC-type input to the GND, for each couple of inputs. In particular:

- unused screw terminal 1 and/or 3 to the screw terminal 2 or 4 (GND for input 1 and input 2);
- unused screw terminal 5 and/or 7 to the screw terminal 6 or 8 (GND for input 3 and input 4);
- unused screw terminal 9 and/or 11 to the screw terminal 10 or 12 (GND for input 5 and input 6);
- unused screw terminal 13 and/or 15 to the screw terminal 14 or 16 (GND for input 7 and input 8).


In the following figure are shown the cable colors for each type of thermocouple.

| THERMOCOUPLE | ALLOY | ANSI MC96.1 <br> (USA) |  | DIN43710 <br> (D) |  | IEC 584-3 (EUROPE) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | - | + | - | + | - | + |
| TC J | Fe-Co | red | white | blue | red | white | black |
| TC K | $\mathrm{Cr}-\mathrm{Al}$ | red | yellow | green | red | white | green |
| TC R | Pt13\%Rh-Pt | red | black | white | red | white | orange |
| TC S | Pt10\%Rh-Pt | red | black | white | red | white | orange |
| TC T | Cu -Co | red | blue | brown | red | white | brown |
| TC E | Cr-Co | red | purple | black | red | white | purple |
| TC B | Pt30\%Rh-Pt6\%Rh | red | grey | red | grey | white | grey |
| TC N | Nicrosil-Nisil | red | brown | / | I | white | pink |

The input scale range values, for selected thermocouple-type input, are shown in the following table.

| TC-type | Scale range | TC-type | Scale range |
| :--- | :--- | :--- | :--- |
| J | $-210^{\circ} \mathrm{C} . .1200^{\circ} \mathrm{C}$ | S | $-50^{\circ} \mathrm{C} . .1768^{\circ} \mathrm{C}$ |
| K | $-200^{\circ} \mathrm{C} . .1372^{\circ} \mathrm{C}$ | R | $-50^{\circ} \mathrm{C} . .1768^{\circ} \mathrm{C}$ |
| E | $-200^{\circ} \mathrm{C} . .1000^{\circ} \mathrm{C}$ | B | $250^{\circ} \mathrm{C} .1820^{\circ} \mathrm{C}$ |
| N | $-210^{\circ} \mathrm{C} . .1300^{\circ} \mathrm{C}$ | T | $-200^{\circ} \mathrm{C} . .400^{\circ} \mathrm{C}$ |

## Dip-switches table

D -3 In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).


## RS485 Register table

| Name | Range $\quad$Interpretation of <br> register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: |
| MachinelD | MSB, LSB | R |  | 40001 |
|  | Id_Code (Module ID) |  | $\begin{aligned} & 0 \times 18 \quad(24 \\ & \text { decimal) } \end{aligned}$ | Bit [15:8] |
|  | Ext_Rev (Module version) |  |  | Bit [7:0] |
| Errors | 1 \| ${ }^{\text {Bit }}$ | R |  | 40002 |
|  | Input 1 and input 2 error: $0=$ there isn't; $1=$ there is |  | 1 | Bit 15 |
|  | Input 3 and input 4 error: $0=$ there isn't; $1=$ there is |  | 1 | Bit 14 |
|  | Input 5 and input 6 error: $0=$ there isn't; $1=$ there is |  | 1 | Bit 13 |
|  | Input 7 and input 8 error: $0=$ there isn't; $1=$ there is |  | 1 | Bit 12 |
|  | Input 1 burn-out error (if TC-type input): $0=$ there isn't; 1=there is |  | / | Bit 11 |
|  | Input 2 burn-out error (if TC-type input): 0=there isn't; $1=$ there is |  | 1 | Bit 10 |
|  | Input 3 burn-out error (if TC-type input): 0=there isn't; $1=$ there is |  | 1 | Bit 9 |
|  | Input 4 burn-out error (if TC-type input): $0=$ there isn't; $1=$ there is |  | 1 | Bit 8 |


|  | Input 5 burn-out error (if TC-type input): 0=there isn't; $1=$ there is | I | Bit 7 |
| :---: | :---: | :---: | :---: |
|  | Input 6 burn-out error (if TC-type input): 0=there isn't; $1=$ there is | 1 | Bit 6 |
|  | Input 7 burn-out error (if TC-type input): 0=there isn't; $1=$ there is | 1 | Bit 5 |
|  | Input 8 burn-out error (if TC-type input): 0=there isn't; $1=$ there is | 1 | Bit 4 |
|  | Input 1 and input 2 communication error: $0=$ there isn't; $1=$ there is | 1 | Bit 3 |
|  | Input 3 and input 4 communication error: $0=$ there isn't; $1=$ there is | 1 | Bit 2 |
|  | Input 5 and input 6 communication error: $0=$ there isn't; $1=$ there is | 1 | Bit 1 |
|  | Input 7 and input 8 communication error: $0=$ there isn't; $1=$ there is | 1 | Bit 0 |
| Errors | Bit ${ }^{\text {a }}$ |  | 40037 |
|  | Supply-voltage error for input 1 and input 2: $0=$ there isn't; 1=there is | 1 | Bit 15 |
|  | RS485-reception error for input 1 and input 2: 0=there isn't; $1=$ there is | 1 | Bit 14 |
|  | Memory error (EEPROM) for input 1 and input 2: 0=there isn't; $1=$ there is | / | Bit 13 |
|  | These bits aren't used | 1 | Bit [12:9] |
|  | CRC EEPROM error for input 1 and input 2: $0=$ there isn't; $1=$ there is. If " 1 ", it is not possible to save in memory (EEPROM) | 1 | Bit 8 |
|  | Supply-voltage error for input 3 and input 4: 0=there isn't; 1=there is | 1 | Bit 7 |
|  | RS485-reception error for input 3 and input 4: 0=there isn't; $1=$ there is | 1 | Bit 6 |
|  | Memory error (EEPROM) for input 3 and input 4: 0=there isn't; $1=$ there is | 1 | Bit 5 |
|  | These bits aren't used | 1 | Bit [4:1] |
|  | CRC EEPROM error for input 3 and input 4: $0=$ there isn't; $1=$ there is. If " 1 ", it is not possible to save in memory (EEPROM) | I | Bit 0 |
| Errors | Bit $\quad$ R |  | 40038 |
|  | Supply-voltage error for input 5 and input 6: $0=$ there isn't; 1=there is | 1 | Bit 15 |
|  | RS485-reception error for input 5 and input 6: 0=there isn't; $1=$ there is | 1 | Bit 14 |
|  | Memory error (EEPROM) for input 5 and input 6: 0=there isn't; $1=$ there is | I | Bit 13 |
|  | These bits aren't used | 1 | Bit [12:9] |
|  | CRC EEPROM error for input 5 and input 6: 0=there isn't; $1=$ there is. If " 1 ", it is not possible to save in memory (EEPROM) | 1 | Bit 8 |
|  | Supply-voltage error for input 7 and input 8: $0=$ there isn't; 1=there is | 1 | Bit 7 |
|  | RS485-reception error for input 7 and input 8: 0=there isn't; $1=$ there is | 1 | Bit 6 |
|  | Memory error (EEPROM) for input 7 and input 8: 0=there isn't; $1=$ there is | 1 | Bit 5 |
|  | These bits aren't used | 1 | Bit [4:1] |
|  | CRC EEPROM error for input 7 and input 8: $0=$ there isn't; $1=$ there is. If " 1 ", it is not possible to save in memory (EEPROM) | 1 | Bit 0 |






| IN8 Fault | Between: -32000, 32000 | Word | R/W |  | 400066 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Fault value of input $8\left[{ }^{\circ} \mathrm{C} / 10\right]$ <br> (if bit40057.13=1) (if bit40057.13=0), $[\mathrm{mV} / 100]$ | 20000 |  |  |  |
|  | IN7-8 <br> ColdJunction |  |  |  |  |
|  | Word | R |  | 40031 |  |

TABLE 1 - CONFIGURATIONS FOR FILTER APPLIED TO ACQUIRED INPUTS IN1 and IN2 (bit40054.[10:8]), IN3 and IN4 (bit40055.[10:8]), IN5 and IN6 (bit40056.[10:8]), IN7 and IN8 (bit40057.[10:8])

| Bit[10:8] | Filter type | Propagation time (if IN $<\mathrm{T}$ ) |
| :--- | :--- | :--- |
| Ob0000 | Deactivated | 45 ms |
| Ob001 | Average (14bits) | 236 ms |
| Ob010 | Average (15bits) | 405 ms |
| Ob011 | Average $+\exp$ (15bits) | 1 s |
| Ob100 | Average $+\exp$ (15bits) | 3 s |
| Ob101 | Average $+\exp$ (15bits) | 8 s |
| Ob110 | Average $+\exp$ (15bits) | 24 s |
| Ob111 | Average $+\exp$ (15bits) | 72 s |

Threshold value: $\mathrm{T}=0.75 \mathrm{mV}$

Propagation time: interval time between a step change of input electrical signal and corresponding change of measure in register (at 115 kBaud ). The propagation times shown in table 1 refer to 50 Hz rejection; to obtain the propagation times refer to 60 Hz rejection, divide them for 1.2.

TABLE 2 - THERMOCOUPLE TYPE OF INPUT

| Bit [7:4] | TC for IN1, IN3, IN5, IN7 | Bit [3:0] | TC for IN2, IN4, IN6, IN8 |
| :---: | :---: | :---: | :---: |
| Ob0000 | TC J | Ob0000 | TC J |
| Ob0001 | TC K | Ob0001 | TC K |
| Ob0010 | TC R | Ob0010 | TC R |
| Ob0011 | TC S | 0b0011 | TC S |
| Ob0100 | TC T | Ob0100 | TC T |
| Ob0101 | TC B | Ob0101 | TC B |
| Ob0110 | TC E | Ob0110 | TC E |
| 0b0111 | TC N | Ob0111 | TC N |

## LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The module power is on |
| ERR | Constant light | The module has at least one of the errors described in RS485 <br> Registers table |
|  | Blinking light | Module failure |
| RX | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
| TX | Blinking light | The module sent a data packet |
|  | Constant light | Module failure |

## Seneca Z-PC Line module: Z203

The Z203 module is a single-phase network analyzer for electric-network voltage up to 500Vac and electric-network current up to $5 \mathrm{~A}(50 \mathrm{~Hz}$ or 60 Hz$)$. The module have an output, electrical value directly proportional to selected input: voltage-type out or current-type out. The electrical value (output) is available on screw terminals and the normalized value is available on RS485 registers.

## General characteristics

$>$ It is possible to detect, with reference to the electric network and load connected to its: RMS voltage, RMS current, active power, reactive power, $\cos \Phi$, frequency
$>$ It is possible to change electrical start/end scale (see table 1, for each measure)
$>$ Normalized start/end scale is between $0 . .+10000$ (for RMS voltage, RMS current, active power) or between $\pm 10000$ (for reactive power, $\cos \Phi$ )
$>$ Management of the connections with current transformer for high power devices
$>$ Configuration of the module (node) address and baud-rate by Dip-Switches
$>$ Configuration of the electrical-network frequency, output (electrical value), rescaled-input type and input rescale by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
> It is possible to switch automatically RS485 to RS232 or vice versa

## Features

| INPUT |  |
| :---: | :---: |
| Number | 1 |
| Accuracy | $0.5 \%$ of E.E.S. (Voltmeter, ampere-meter, watt-meter, frequencymeter) |
|  | Thermal stability: $<100 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ |
|  | EMI: < 1\% |
| Protection | This module provides inputs protection against the ESD (up to 4 kV ) |
| Voltage-type IN | E.S.S./E.E.S.(Electrical Start/End Scale) configurable between: $0 . .125 \mathrm{Vac} ; 0 . .250 \mathrm{Vac} ; 0 . .500 \mathrm{Vac}$. Input impedance: $600 \mathrm{k} \Omega$ |
| Current-type IN | E.S.S./E.E.S.(Electrical Start/End Scale) configurable between: 0..1.25A; 0..2.5A; 0..5A. Peak factor: 3; rated power: 5Arms; max current: 15A. Input impedance: $3.3 \mathrm{~m} \Omega$ |
| OUTPUT |  |
| Number | 1 |
| Resolution | 12 bits |
| Accuracy | 0.1\% of output scale range |
| Voltage-type OUT | Output scale range configurable between: $0-10 \mathrm{~V}$ or $0-5 \mathrm{~V}$ (minimum resistance that can be connected: $2 \mathrm{k} \Omega$ ). Saturation if voltage>11V |
| Current-type OUT | Output scale range configurable between: $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ (max resistance that can be connected: 500 (). Saturation if current>21mA |
| CONNECTIONS |  |
| RS485 interface | IDC10 connector |
| RS232 interface | Jack stereo 3.5mm connector: plugs into COM port |



| POWER SUPPLY | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Supply voltage | $\mathrm{Max}: 2 \mathrm{~W}$ |
| Power <br> consumption |  |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

## Connections

Input connection


Connect to the screw terminals 10 and 12 the electric network.
Connect to the screw terminals 7 and 9 the load to analyze.

## Output connection

Voltage-type output


## Current-type output

5


Shielded cables are recommended to connect the outputs (through screw terminals: 5, 6 if voltage-type output; 4,5 if current-type output).

D- -3 It is not possible to obtain an output (electric value) directly proportional to the electricnetwork frequency.

Connection with current transformer
The Z203 module allows to control a single-phase load connected to the electric network. To use the Z203 for high power devices, it is possible to connect a current transformer.

WARNING
Only the connection shown in the following figure is allowed if a current transformer need to be connected.


[^2]Parameters of current transformer CT are shown in the following table.

| $\mathbf{P 1} / \mathbf{K}$ | Primary wound input |
| :--- | :--- |
| $\mathbf{P 2} / \mathbf{L}$ | Primary wound output |
| S2/K | Secondary wound input |
| S2/L | Secondary wound output |

## Dip-switches table

D- -6 In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

| BAUD-RATE (Dip-Switches: SW1) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | Meaning |  |  |  |  |
|  |  | Baud-rate=9600 Baud |  |  |  |  |
|  | - | Baud-rate=19200 Baud |  |  |  |  |
| $\bullet$ |  | Baud-rate=38400 Baud |  |  |  |  |
| $\bullet$ | - | Baud-rate=57600 Baud |  |  |  |  |
| ADDRESS (Dip-Switches: SW1) |  |  |  |  |  |  |
| 3 | 4 | 5 | 6 | 7 | 8 | Meaning |
|  |  |  |  |  |  | Address and |
|  |  |  |  |  | - | Address=1 |
|  |  |  |  | $\bullet$ |  | Address=2 |
|  |  |  |  | - | - | Address=3 |
|  |  |  | $\bullet$ |  |  | Address=4 |
| X | X | X | X | X | X | ............... |
| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |  | Address=63 |

## FREQUENCY (Dip-Switches: SW2)

| 1 | Meaning |
| :--- | :--- |
|  | Electric network frequency $=50 \mathrm{~Hz}$ |

- Electric network frequency $=60 \mathrm{~Hz}$

OUTPUT - ELECTRIC VALUE (Dip-Switches: SW2)


INPUT-RISCALE TYPE (Dip-Switches: SW2)

| 4 | 5 | Meaning |
| :--- | :--- | :--- |
|  |  | Rescaled $=100 \%$ (see table below) |
|  |  | Rescal |

-     - Rescaled=50\% (see table below)

Rescaled=25\% (see table below)
This setting is not allowed
INPUT RESCALE (Dip-Switches: SW2)

| 6 | 7 | 8 | Meaning |
| :--- | :--- | :--- | :--- |
|  |  |  | RMS voltage |
|  |  | $\bullet$ | RMS current |

Active power

| $\bullet$ | $\bullet$ | $\bullet$ | Cos $\Phi$ |
| :--- | :---: | :---: | :--- |
| $\bullet$ |  |  | This setting is not allowed |
| $\bullet$ |  | $\bullet$ | Reactive power |
| $\bullet$ | $\bullet$ |  | This setting is not allowed |
| $\bullet$ | $\bullet$ | $\bullet$ | This setting is not allowed |

## RS485 TERMINATOR (Dip-Switches: SW3)

| 1 | 2 | Meaning |
| :--- | :--- | :--- |
|  |  | RS485 terminator disabled |
| $\bullet$ |  | RS485 terminator enabled |

The measure ranges for RMS voltage, RMS current, active power, reactive power, $\cos \Phi$, frequency are shown in the following table.

D- 2 RMS voltage, RMS current, active power are measured by Z 203 directly; reactive power, $\cos \Phi$ are obtained through processing by Z203.

| Possible measures | Measure range (100\%) |  | Measure range (50\%) |  | Measure range (25\%) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Max | Min | Max | Min | Max |
| RMS voltage | OVac | 500Vac | OVac | 250Vac | OVac | 125Vac |
| RMS current | 0A | 5A | OA | 2.5A | OA | 1.25A |
| Active power | OW | 2500W | OW | 1250W | OW | 625W |
| Reactive power | OVAR | 2500 VAR | 0 VAR | 1250 VAR | 0 VAR | 625 VAR |
| CosФ | 0 | 1 | 0 | 0.5 | 0 | 0.25 |
| Frequency (*) | 40 Hz | 70 Hz | 40 Hz | 70Hz | 40 Hz | 70 Hz |


#### Abstract

(*) It is possible to use the Z 203 module as frequency meter to measure frequencies $^{*}$ between 40 Hz and 70 Hz . To measure RMS voltage, RMS current, active power, reactive power, $\cos \Phi$, the signal have to have an accurate frequency (about 50 Hz or 60 Hz ).


## RS485 Register table

| Name | Range | Interpretation of register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MachineID | 1 | MSB, LSB | R |  | 40001 |
|  | Id_Code (Module ID) |  |  | $0 \times 13$ decimal) | Bit [15:8] |
|  | Ext_Rev (Module version) |  |  |  | Bit [7:0] |
| FWREV | / | Word | R |  | 40005 |
|  | Firmware Code |  |  |  |  |
| Status | / | Bit | R/W |  | 40093 |
|  | Reset of module: $0 \times 65$ (101 decimal)=activated; any other number=deactivated |  |  | / | Bit [15:8] |
|  | Input voltage: $0=$ voltage $>40 \mathrm{Vrms}$; $1=$ voltage $<40 \mathrm{Vrms}$ |  |  | 1 | Bit 7 |
|  | These bits aren't used |  |  | 1 | Bit [6:5] |
|  | Hardware error: $0=$ there isn't; $1=$ there is |  |  | 1 | Bit 4 |
|  | These bits aren't used |  |  | 1 | Bit [3:0] |
| Baudrate Delay | / | MSB, LSB | R/W |  | 40003 |
|  | Baud-rate for RS485 (baud-rate of module/node if parameters are configurated by memory modality):$\begin{array}{lll} 0=4800 ; & 1=9600 ; \quad 2=19200 ; & 3=38400 ; \\ 5=115200 ; & 6=1200 ; 7=2400 & \\ \hline \end{array}$ |  |  | 38400 | Bit [15:8] |



## LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| ERR | Blinking light | Measure of voltage: <40Vac |
|  | Constant light | The module has at least one of the errors described in RS485 <br> Registers table |
|  | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
| TX | Blinking light | The module sent a data packet |

## Seneca Z-PC Line module: Z-4RTD-2

The Z-4RTD-2 module acquires up to 4 RTD signals (through 4 inputs regardless and isolated with each other) e it converts them it to a temperature or resistance measure.

## General characteristics

> It's possible to choose if the input is RTD-type: PT100, NI100, PT500, PT1000
$>$ It's possible to choose the RTD-measure type: temperature $\left({ }^{\circ} \mathrm{C}\right)$ or resistance $(\Omega)$ (for each input)
$>$ It's possible to choose if RTD-wire connection: 2-wire, 3-wire or 4-wire (for each input)
$>$ Wire measure and wire resistance compensation (if 3-wire connection)
$>$ Configuration of a filter applied to each input signal
$>$ It is possible to configure the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the
$>$ communication or power supply
> It is possible to switch automatically RS485 to RS232 or vice versa

## Features

| INPUT |  |
| :---: | :---: |
| Number | 1 |
| Resolution | 13bit (if filter=0-1); 14 bit (if filter=2-7) |
| Sampling frequency | Configurable between: 48 Hz (if the filter is deactivated), 20 Hz (if filter=1), 11 Hz (if filter=2-7) |
| Rejection | 50 Hz or 60 Hz |
| Filter (0-7) | IIR and FIR; configurable between: 0 (deactivated), from $1(\mathrm{~min})$ to 7(max) |
| Accuracy | Initial:0.05\% of $350 \Omega$ (PT100, NI100 end scale); $0.05 \%$ of $1850 \Omega$ (PT500, PT1000 end scale) |
|  | Linearity:0.025\% of $350 \Omega$ (PT100, NI100 end scale); $0.025 \%$ of $1850 \Omega$ (PT500, PT1000 end scale) |
|  | Thermal stability: < $50 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ |
|  | EMI: < 1\% |
| Protection | This module provides inputs protection against the ESD (up to 4 kV ) |


|  | Temperature <br> range | Resistance <br> range <br> (RTD=Rx) | Burn-out <br> error if <br> (RTD=Rx) | Max wire <br> resistance <br> (Rf) | Rated <br> current <br> through <br> RTD |
| :--- | :--- | :--- | :--- | :--- | :--- |
| RTD:PT100-type <br> input (EN 60751) | From $-200^{\circ} \mathrm{C}$ <br> to $650^{\circ} \mathrm{C}$ | From $18.5 \Omega$ <br> to $330 \Omega$ | $\mathrm{Rx}<18 \Omega$ <br> $R x>341 \Omega$ | $20 \Omega$ | $875 \mu \mathrm{~A}$ |
| RTD:NI100-type <br> input (DIN 43760) | From $-60^{\circ} \mathrm{C}$ <br> to $250^{\circ} \mathrm{C}$ | From $69 \Omega$ <br> to $295 \Omega$ | $\mathrm{Rx}<60 \Omega$ <br> $\mathrm{Rx}>301 \Omega$ | $30 \Omega$ | $875 \mu \mathrm{~A}$ |
| RTD:PT500-type <br> input (EN 60751) | From $-200^{\circ} \mathrm{C}$ <br> to $750^{\circ} \mathrm{C}$ | From $92.5 \Omega$ <br> to $1800 \Omega$ | $R x<90 \Omega$ <br> $R x>1851 \Omega$ | $30 \Omega$ | $333 \mu \mathrm{~A}$ |
| RTD:PT1000-type <br> input (EN 60751) | From $-200^{\circ} \mathrm{C}$ <br> to $210^{\circ} \mathrm{C}$ | From $185 \Omega$ <br> to $1850 \Omega$ | $\mathrm{Rx}<180 \Omega$ <br> $\mathrm{Rx}>1851 \Omega$ | $30 \Omega$ | $333 \mu \mathrm{~A}$ |


| CONNECTIONS |  |  |
| :--- | :--- | :---: |
| RS485 interface | IDC10 connector for DIN 46277 rail (back-side panel) |  |
| RS232 interface | Jack stereo 3.5mm connector: plugs into COMport |  |
| 1500 Vac ISOLATIONS |  |  |
| Between: power supply, ModBUS RS485/RS232, input 1, input 2, <br> input 3, input 4 |  |  |



POWER SUPPLY

| Supply voltage | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Power <br> consumption | Max: 0.7 W |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

| MODULE CASE |  |
| :--- | :--- |
| Case-type | PBT, black |
| Dimensions | Width $\mathrm{W}=100 \mathrm{~mm}$, Height $\mathrm{H}=112 \mathrm{~mm}$, Depth $\mathrm{D}=17.5 \mathrm{~mm}$ |
| Terminal board | Removable 4-way screw terminals: <br> pitch 3.5mm, sections 2.5mm |
| Protection class | IP20 (International Protection) |

## Input connections

It is possible to connect to Z-4RTD-2 module Platinum or Nichel thermoresistances with 2,3,4 wires.


| RTD-wires <br> connection | Distance <br> between RTD <br> and module | Wires compensation | RTD measure ( $\left.{ }^{\circ} \mathbf{C -} \mathbf{\Omega}\right)$ <br> depends/does not depend <br> on wire-resistances |
| :--- | :--- | :--- | :--- |
| 2 wires | $<10 \mathrm{~m}$ | NO | Depends |
| 3 wires | $>10 \mathrm{~m}$ | YES (the compensation is <br> performed on the average <br> value of wire resistances) | Does not depend (if the wire <br> resistances are equal) |
| 4 wires | $>10 \mathrm{~m}$ | NO | Does not depend (max <br> accuracy) |

## Dip-switches table

D- -6 In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).


## RS485 Register table

| Name | Range $\quad$Interpretation of <br> register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: |
| MachinelD | / | R |  | 40001 |
|  | Id_Code (Module ID) |  | 0x16 | Bit [15:8] |
|  | Ext_Rev (Module version) |  |  | Bit [7:0] |
| Errors | / ${ }^{\text {/ }}$ Bit | R |  | 40002 |
|  | Input 1 error: $0=$ there isn't; $1=$ there is |  | 1 | Bit 15 |
|  | Input 2 error: 0=there isn't; 1=there is |  | 1 | Bit 14 |
|  | Input 3 error: 0=there isn't; $1=$ there is |  | 1 | Bit 13 |
|  | Input 4 error: $0=$ there isn't; $1=$ there is |  | 1 | Bit 12 |
|  | Input 1 burn-out error: $0=$ there isn't; $1=$ there is |  | 1 | Bit 11 |
|  | Input 2 burn-out error: $0=$ there isn't; 1 =there is |  | 1 | Bit 10 |
|  | Input 3 burn-out error: 0 =there isn't; $1=$ there is |  | 1 | Bit 9 |
|  | Input 4 burn-out error: $0=$ there isn't; $1=$ there is |  | 1 | Bit 8 |
|  | Input 1 temperature-acquired error: $0=$ there isn't; $1=$ there is |  | 1 | Bit 7 |
|  | Input 2 temperature-acquired error: 0=there isn't; 1=there is |  | 1 | Bit 6 |
|  | Input 3 temperature-acquired error: 0=there isn't; 1=there is |  | / | Bit 5 |
|  | Input 4 temperature-acquired error: $0=$ there isn't; $1=$ there is |  | 1 | Bit 4 |
|  | Initialization error for input 1:0=there isn't; $1=$ there is |  | 1 | Bit 3 |
|  | Initialization error for input 2: $0=$ there isn't; $1=$ there is |  | 1 | Bit 2 |
|  | Initialization error for input 3: $0=$ there isn't; 1 =there is |  | 1 | Bit 1 |
|  | Initialization error for input 4: $0=$ there isn't; $1=$ there is |  | 1 | Bit 0 |



|  | These bits aren't used |  |  | / | Bit [14:8] |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | LED ERR status to signal if there is input 1 error (see bit40002.15): 0=LED ERR "ON" means that there is input 1 error; $1=$ LED ERR is regardless of input 1 error |  |  | 0 | Bit 7 |
|  | LED ERR status to signal if there is input 2 error (see bit40002.14): 0=LED ERR "ON" means that there is input 2 error; $1=L E D$ ERR is regardless of input 2 error |  |  | 0 | Bit 6 |
|  | LED ERR status to signal if there is input 3 error (see bit40002.13): 0=LED ERR "ON" means that there is input 3 error; $1=$ LED ERR is regardless of input 3 error |  |  | 0 | Bit 5 |
|  | LED ERR status to signal if there is input 4 error (see bit40002.12): 0=LED ERR "ON" means that there is input 4 error; $1=L E D$ ERR is regardless of input 4 error |  |  | 0 | Bit 4 |
|  | Module behavior if there is input 1 error: $0=$ register 40042 is overwritten in 40003 (word register) and in 40007,40008 (floating point register); 1=content of register 40003 (word) and 40007,40008 (FP) is the last measure acquired through input 1 correctly |  |  | 0 | Bit 3 |
|  | Module behavior if there is input 2 error: $0=$ register 40043 is overwritten in 40004 (word register) and in 40009,40010(floating point register); $1=$ content of register 40004 (word) and $40009,40010(F P)$ is the last measure acquired through input 2 correctly |  |  | 0 | Bit 2 |
|  | Module behavior if there is input 3 error: 0=register 40044 is overwritten in 40005 (word register) and in 40011,40012(floating point register); $1=$ content of register 40005 (word) and $40011,40012(\mathrm{FP})$ is the last measure acquired through input 3 correctly |  |  | 0 | Bit 1 |
|  | Module behavior if there is input 4 error: 0=register 40045 is overwritten in 40006 (word register) and in 40013,40014 (floating point register); $1=$ content of register 40006 (word) and 40013,40014(FP) is the last measure acquired through input 4 correctly |  |  | 0 | Bit 0 |
| Baudrate Delay | Delay: from $0 \times 00=0$ to 0xFF=255 | MSB, LSB | R/W |  | 40036 |
|  | Baud-rate for RS485 (baud-rate of module/node if parameters are configurated by memory modality):$\begin{array}{lll} 0=4800 ; \quad 1=9600 ; \quad 2=19200 ; & 3=38400 ; \quad 4=57600 ; \\ 5=115200 ; & 6=1200 ; 7=2400 & \end{array}$ |  |  | 38400 | Bit [15:8] |
|  | Delay for RS485 (delay of communication response: pauses between the end of $R x$ message and the start of Tx message) |  |  | 0 | Bit [7:0] |
| Address Parity | Address: from $0 \times 01=1$ to $0 \times F F=255$ | MSB, LSB | R/W |  | 40035 |
|  | Address for RS485 (address of module/node if parameters are configurated by memory modality) |  |  | 1 | Bit [15:8] |
|  | Parity for RS485: 0=there isn't; 1=even parity; 2=odd parity |  |  | 0 | Bit [7:0] |
| Reset | 0xCCCC | Word | R/W |  | 40029 |
|  | Reset of module, if reg.40029=0xCCCC |  |  | 1 |  |
|  | INPUT 1 |  |  |  |  |
| IN1 Flags | 1 | Bit | R/W |  | 40037 |
|  | These bits aren't used |  |  | / | Bit [15:8] |
|  | RTD-type input. If bit40037.[7:6]=0b00: PT100; ifbit40037.[7:6]=0b01: N1100; if bit40037.[7:6]=0b10:PT500; if bit40037.[7:6]=0b11: PT1000 |  |  | Ob00 | Bit [7:6] |
|  | Input measure type: 0=temperature; 1=resistance |  |  | 0 | Bit 5 |
|  | RTD connection type: 2 or 4 wires (if bit40037.4=0), 3 wires (if bit40037.4=1) |  |  | 0 | Bit 4 |
|  | Rejection: $0=50 \mathrm{~Hz} ; 1=60 \mathrm{~Hz}$ |  |  | 0 | Bit 3 |



|  | Filter applied to acquired input. To know the configurations of bit40039.[2:0], see table1 |  |  | Ob010 | Bit [2:0] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IN3 | / | Word | R |  | 40005 |
|  | Measure of input 3 [ ${ }^{\circ} \mathrm{C} / 10$ ] (if bit40039.5=0), $[\Omega / 100$ ] (if bit40039.5=1 and RTD-type is PT100, NI100), $[\Omega / 10]$ (if bit40039.5=1 and RTD-type is PT1000, PT500) |  |  | / |  |
| IN3 MSW |  | FP32bit_MSW | R |  | 40011 |
| IN3 LSW |  | FP32bit_LSW | R |  | 40012 |
|  | Floating point measure of input $1\left[{ }^{\circ} \mathrm{C}\right.$ ] (if bit40039.5=0), [ $\Omega$ ] (if bit40039.5=1 and RTD-type is PT100, NI100), [ $\Omega$ ] (if bit40039.5=1 and RTD-type is PT1000, PT500). To interpret the FP32bit register, see bit40041.15 |  |  | / |  |
| IN3 wire |  | Word | R |  | 40018 |
|  | Wire-connection measure of input $3[\mathrm{~m} \Omega$ ] |  |  | 1 |  |
| IN3 Fault | Between: -32000, 32000 (if temperature); 0, 32000 (if resistance) | Word | R/W |  | 40044 |
|  | Fault value of input $3\left[{ }^{\circ} \mathrm{C} / 10\right]$ (if bit40039.5=0), $[\Omega / 100]$ (if bit40039.5=1 and RTD-type is PT100, NI100), $[\Omega / 10]$ (if bit40039.5=1 and RTD-type is PT1000, PT500). |  |  | 8500 |  |
|  | INPUT 4 |  |  |  |  |
| IN4 Flags | 1 l | Bit | R/W |  | 40040 |
|  | These bits aren't used |  |  | 1 | Bit [15:8] |
|  | RTD-type input. If bit40040.[7:6]=0b00: PT100; ifbit40040.[7:6]=0b01: NI100; if bit40040.[7:6]=0b10:PT500; if bit40040.[7:6]=0b11: PT1000 |  |  | Ob00 | Bit [7:6] |
|  | Input measure type: 0=temperature; 1=resistance |  |  | 0 | Bit 5 |
|  | RTD connection type: 2 or 4 wires (if bit40040.4=0), 3 wires (if bit40040.4=1) |  |  | 0 | Bit 4 |
|  | Rejection: $0=50 \mathrm{~Hz} ; 1=60 \mathrm{~Hz}$ |  |  | 0 | Bit 3 |
|  | Filter applied to acquired input. To know the configurations of bit40040.[2:0], see table1 |  |  | 0b010 | Bit [2:0] |
| IN4 | / | Word | R |  | 40006 |
|  | Measure of input 4 [ ${ }^{\circ} \mathrm{C} / 10$ ] (if bit40040.5=0), $[\Omega / 100$ ] (if bit40040.5=1 and RTD-type is PT100, NI100), $[\Omega / 10]$ (if bit40040.5=1 and RTD-type is PT1000, PT500) |  |  | / |  |
| IN4 MSW |  | FP32bit_MSW | R |  | 40013 |
| IN4 LSW |  | FP32bit_LSW | R |  | 40014 |
|  | Floating point measure of input $4\left[{ }^{\circ} \mathrm{C}\right]$ (if bit40040.5=0), [ $\Omega$ ] (if bit40040.5=1 and RTD-type is PT100, NI100), [ $\Omega$ ] (if bit40040.5=1 and RTD-type is PT1000, PT500). To interpret the FP32bit register, see bit40041.15 |  |  | 1 |  |
| IN4 wire |  | Word | R |  | 40019 |
|  | Wire-connection measure of input 4 [m/] |  |  | / |  |
| IN4 Fault | Between: -32000, 32000 (if temperature); 0, 32000 (if resistance) | Word | R/W |  | 40045 |
|  | Fault value of input $4\left[{ }^{\circ} \mathrm{C} / 10\right]$ (if bit $40040.5=0$ ), $[\Omega / 100]$ (if bit40040.5=1 and RTD-type is PT100, NI100), [ $\Omega / 10$ ] (if bit40040.5=1 and RTD-type is PT1000, PT500). |  |  | 8500 |  |




Threshold values T: PT100, $\mathrm{T}=8^{\circ} \mathrm{C} ; \mathrm{NI} 100, \mathrm{~T}=5^{\circ} \mathrm{C} ; \mathrm{PT} 500, \mathrm{~T}=9^{\circ} \mathrm{C} ; \mathrm{PT} 1000, \mathrm{~T}=5^{\circ} \mathrm{C}$.


Propagation time: interval time between a step change of input electrical signal and corresponding change of measure in register (at 115 kBaud ). The propagation times shown in table 1 refer to 50 Hz rejection; to obtain the propagation times refer to 60 Hz rejection, divide them for 1.2.

## LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| ERR | Blinking light | The module has at least one of the errors described in RS485 <br> Registers table |
|  | Constant light | Module failure |
|  | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
| TX | Blinking light | The module sent a data packet |
|  | Constant light | Module failure |

## Seneca Z-PC Line module: Z-SG

The Z-SG module allows to manage the load cell signals and to process the weight value.

## General characteristics

$>$ It is possible to configure an analog output by Dip-Switches. This output is directly proportional to the input signal, and it can be: $0 . .5 \mathrm{~V}$ or $0 . .10 \mathrm{~V}$ (if voltage-type output), $0 . .20 \mathrm{~mA}$ or $4 . .20 \mathrm{~mA}$ (if current-type output)
$>$ It is possible to select load cell sensitivity by Dip-Switches (between 7 values)
$>$ It is possible to choose resolution
$>$ Technical net weight measure is available through RS232 and RS485 bus communication
$>$ Moving average filtering of weight
$>$ It is possible to acquire tare value when a digital signal commutation occurs or by a button. Tare value can be saved in RAM and/or EEPROM memory.
$>$ It is possible to connect to digital output a resistive load to detect when a particular condition occurs
$>$ Configuration of the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
> It is possible to switch automatically RS485 to RS232 or vice versa

## Features

| ANALOG INPUT |  |
| :---: | :---: |
| Number | 1 (for one load cell: + Excitation, - Excitation, +Sense, - Sense, + Signal, - Signal) |
| Resolution | 24bits |
| Sampling frequency | Configurable between: $12.53 \mathrm{~Hz} ; 16.65 \mathrm{~Hz}$; $24.82 \mathrm{~Hz} ; 37.59 \mathrm{~Hz}$; $49.95 \mathrm{~Hz} ; 50.57 \mathrm{~Hz} ; 74.46 \mathrm{~Hz} ; 151.71 \mathrm{~Hz}$ |
| Rejection | 50 Hz or 60 Hz |
| Accuracy | Initial: $0.1 \%$ of E.E.S. |
|  | Linearity: 0.03\% of E.E.S. |
|  | Thermal stability: $25 \mathrm{ppm} / \mathrm{K}$ |
|  | EMI: < $1 \%$ |
| ANALOG OUTPUT |  |
| Number | 1 |
| Accuracy | 0.1\% of output scale range |
| $\begin{aligned} & \text { Response time (10\%- } \\ & 90 \% \text { ) } \end{aligned}$ | 5 ms |
| Voltage-type OUT | Output scale range configurable between: $0 . .5 \mathrm{~V}$ or $0 . .10 \mathrm{~V}$ by DipSwitches. Minimum resistance that can be connected: $2 \mathrm{k} \Omega$ |
| Current-type OUT | Output scale range configurable between: $0 . .20 \mathrm{~mA}$ or $4 . .20 \mathrm{~mA}$ by Dip-Switches. Max resistance that can be connected: $500 \Omega$ |
| LOAD CELLS |  |

A load cell or more load cells (if they are parallel-connected) can be connected to the Z-SG module.

| Load impedance | Minimum impedance that can be connected: $87 \Omega$. This value can <br> be equivalent impedance of more parallel-connected load cells. <br> For example: up to 4 load cells s if each cell has input inpedance: <br> $350 \Omega$ ), up to 8 load cells (if each cell has input impedance: $1000 \Omega)$ |
| :--- | :--- |


| Cell sensitivity | Configurable between: $\pm 1 \mathrm{mV} / \mathrm{V} ; \quad \pm 2 \mathrm{mV} / \mathrm{V} ; \quad \pm 4 \mathrm{mV} / \mathrm{V} ; \quad \pm 8 \mathrm{mV} / \mathrm{V} ;$ <br> $\pm 16 \mathrm{mV} / \mathrm{V} ; \pm 32 \mathrm{mV} / \mathrm{V} ; \pm 64 \mathrm{mV} / \mathrm{V}$ by Dip-Switches. Cell sensitivity can <br> be acquired by register (in alternative) |
| :--- | :--- |
| Internal voltage supply | To supply the load cell(s), the \#7 screw terminal (+Excitation) <br> powers 5Vdc with reference to the \#10 screw terminal (-Excitation). <br> The \#8 screw terminal (+Sense) reads "+Excitation", the \#11 screw <br> terminal (-Sense) reads "-Excitation" |
| CONNECTIONS | IDC10 connector |
| RS485 interface | Jack stereo 3.5mm connector: plugs into COMport |
| RS232 interface | This module provides inputs protection against the ESD (up to 4kV) <br> for every screw terminals |
| PROTECTION | Between: power supply, ModBUS RS485 and analog output, analog <br> input, digital input/output |
| $\mathbf{1 5 0 0}$ Vac ISOLATIONS |  |



POWER SUPPLY

| Supply voltage | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Power <br> consumption | $\mathrm{Max}: 2 \mathrm{~W}$ |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

## Functioning and connections

Z-SG setting parameters are: digital input/output, analog output, operating modality, load cell sensitivity. These parameters are settable only by Dip-Switches (except load cell sensitivity, settable by Dip-Switches and by bus communication).

## ANALOG INPUT



| Input | Screw <br> terminal | Meaning |
| :--- | :--- | :--- |
| + Excitation | 7 | Load cell power $(+)$ |
| + Sense | 8 | Reading of load cell power $(+)$ |
| + Signal | 9 | Load cell output signal $(+)$ |
| - Signal | 12 | Load cell output signal $(-)$ |
| - Sense | 11 | Reading of load cell power $(-)$ |
| - Excitation | 10 | Load cell power $(-)$ |

## D -3 To connect the Z-SG to load cell in 4-wires modality:

- short-circuit screw terminal 7 to screw terminal 8;
- short-circuit screw terminal 10 to screw terminal 11.

[^3]
## ANALOG OUTPUT


"V" means voltmeter, "A" means amperemeter.
Z-SG module allows to associate net weight to the analog output value (and normalized netweight measure), as described in the following points:

- if technical net weight measure (reg.40064, 40065 FP ) is less than min tech net-weight (reg. $40050,40051 \mathrm{FP}$ ): normalized net-weight measure (reg.40063) is equal to 0 and analog output is $0 \%(0 \mathrm{~V}, 0 \mathrm{~mA}, 4 \mathrm{~mA})$, available through screw terminals 4 and 5 ;
- if technical net weight measure (reg. $40064,40065 \mathrm{FP}$ ) is greater than max tech net-weight (reg. 40052,40053 FP): normalized net-weight measure (reg. 40063) is equal to 30000 and analog output is $100 \%(5 \mathrm{~V}, 10 \mathrm{~V}, 20 \mathrm{~mA})$, available through screw terminals 4 and 5 ;
- if technical net weight measure (reg.40064, 40065 FP ) is between min tech net-weight and max tech net-weight, analog output (current/voltage) is directly proportional to the net weight measure and it is available through screw terminals 4 and 5 .


## STABLE WEIGHT

Z-SG module allows to detect when a weight is stable: weight stability information is available through bit40066.4 or through digital output.

In particular, a weight measure is stable if the weight variation of net weight (reg.40064, 40065), in a given time interval ("delta time", reg.40058), is less than weight interval ("delta weight", reg.40056, 40057 floating point).

DIGITAL INPUT OR DIGITAL OUTPUT

DIGITAL INPUT


DIGITAL OUTPUT Load


[^4]Z-SG module allows to activate a digital input or (in alternative) a digital output only by DipSwitch. Digital input allows to storage tare value and it can be always used in alternative to calibration button. Digital output allows to open/close a opto-isolated contact: to use this information, it is possible to connect a 24 Vdc voltage generator with a series resistive load. In this way, if one of the following setting (selected by bit40059.[6:0]) occurs, there is a no zero current through resistive load (example: lamp).

- gross weight is greater than load cell end scale
- weight is stable and net weight is greater than Threshold
- weight is stable


## Dip-switches table

In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

| BAUD-RATE (Dip-Switches: SW1) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | Meaning |  |  |  |  |
|  |  | Baud-rate=9600 Baud |  |  |  |  |
|  | - | Baud-rate=19200 Baud |  |  |  |  |
| $\bullet$ |  | Baud-rate=38400 Baud |  |  |  |  |
| $\bullet$ | $\bullet$ | Baud-rate=57600 Baud |  |  |  |  |
| ADDRESS (Dip-Switches: SW1) |  |  |  |  |  |  |
| 3 | 4 | 5 | 6 | 7 | 8 | Meaning |
|  |  |  |  |  |  | Address and |
|  |  |  |  |  | - | Address=1 |
|  |  |  |  | - |  | Address=2 |
|  |  |  |  | $\bullet$ | $\bullet$ | Address=3 |
|  |  |  | $\bullet$ |  |  | Address=4 |
| X | X | X | X | X | X | ................ |
| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | Address=63 |


| DIGITAL INPUT/OUTPUT (Dip-Switches: SW2) |  |  |
| :---: | :---: | :---: |
| 1 | Meaning |  |
|  | Digital input. Calibration button (used during calibration procedure) is enabled |  |
| $\bullet$ |  | al output |
| ANALOG OUTPUT (Dip-Switches: SW2) |  |  |
| 2 | 3 | Meaning |
|  |  | Output scale range $=0 . .10 \mathrm{~V}$ |
|  | - | Output scale range $=0 . .5 \mathrm{~V}$ |
| $\bullet$ |  | Output scale range $=0 . .20 \mathrm{~mA}$ |
| $\bullet$ | $\bullet$ | Output scale range $=4 . .20 \mathrm{~mA}$ |
| OPERATING MODALITY (Dip-Switches: SW2) |  |  |
| 4 | 5 | Meaning |
|  |  | Factory calibration |
|  | $\bullet$ | Calibration with known weight |
| $\bullet$ |  | Factory calibration using calibration button (or digital input) |
| $\bullet$ | $\bullet$ | Calibration with known weight using calibration button (or digital input) |


| LOAD CELL SENSITIVITY (Dip-Switches: SW2) |  |  |  |
| :--- | :--- | :--- | :--- |
| 6 | 7 | 8 | Meaning |
|  |  |  | $\pm 1 \mathrm{mV} / \mathrm{V}$ |
|  |  | $\bullet$ | $\pm 2 \mathrm{mV} / \mathrm{V}$ |
|  | $\bullet$ |  | $\pm 4 \mathrm{mV} / \mathrm{V}$ |
|  | $\bullet$ | $\bullet$ | $\pm 8 \mathrm{mV} / \mathrm{V}$ |
| $\bullet$ |  |  | $\pm 16 \mathrm{mV} / \mathrm{V}$ |
| $\bullet$ |  | $\bullet$ | $\pm 32 \mathrm{mV} / \mathrm{V}$ |
| $\bullet$ | $\bullet$ |  | $\pm 64 \mathrm{mV} / \mathrm{V}$ |
| $\bullet$ | $\bullet$ | $\bullet$ | The module acquires load cell sensitivity from register 40044, 40045 (FP): in this case, <br> real numbers for sensitivity are allowed |


| RS485 TERMINATOR (Dip-Switches: SW3) |  |  |
| :--- | :--- | :--- |
| 1 | 2 | Meaning |
|  |  | RS485 terminator disabled |
| - |  | RS485 terminator enabled |

## RS485 Register table

Generic parameters of Z-SG module are shown in the following table.



| Register (40060) value |  | Sampling frequency <br> $(\mathrm{Hz})$ | 50 Hz rejection | 60 Hz rejection |
| :---: | :---: | :---: | :---: | :---: |
| 0 x | decimal | ( |  |  |
| 001 B | 27 | 151.71 | NO | NO |
| 0037 | 55 | 74.46 | NO | NO |
| 0052 | 82 | 49.95 | YES | YES |
| 006D | 109 | 37.59 | NO | YES |
| 009B | 155 | 50.57 | NO | NO |
| 00B7 | 183 | 24.82 | YES | NO |
| 00D2 | 210 | 16.65 | YES | YES |
| 00ED | 237 | 12.53 | NO | YES |


| Resolution | $/$ | Bit | R/W |  | 40059 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0=resolution value is acquired from bit[14:8]; 1=resolution <br> is equal to 24bits | 0 | Bit 15 |  |  |
|  | Resolution value (needs to be multiplied by 1000), if <br> bit40059.15=0 | 30 | Bit [14:8] |  |  |
| Number <br> Samples | Of | Between: 1; 100 | Rord | R/W | 40061 |
|  | These bits aren't used | $/$ | Bit [15:8] |  |  |
|  | Number of samples to execute the moving average of <br> weight. Registers 40064 and 40065 contain the result of <br> moving average (floating point weight) | 100 | Bit [7:0] |  |  |

To choose the number of samples, see the following table.

| Number of samples | Weight measure stability | Weight measure speed |
| :--- | :--- | :--- |
| High values (up to 100) | Better | Worst |
| Low values (up to 1) | Worst | Better |



Load-cell configuration parameters are shown in the following table.


| Known weight <br> MSW |  | FP32bit_MSW | R/W |  | 40048 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Known weight <br> LSW |  | FP32bit_LSW | R/W |  | 40049 |
|  | If load cell end scale is unknown, switch Dip-Switches <br> SW2-4 to OFF and SW2-5 to ON. In this case, reg. 40048, <br> 40049 (FP) is the known weight [mg, g, kg, etc...] | 10000 <br> $[\mathrm{mg}$, <br> kg, etc...] |  |  |  |

Net-weight parameters are shown in the following table.


ADC value is shown in the following table.

| ADC value | Word | $R$ |  | 40062 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | ADC value (it refers to gross weight) |  |  |  |

Stable-weight parameters are shown in the following table.

| Delta weight <br> MSW |  | FP32bit_MSW | R/W |  | 40056 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Delta weight <br> LSW |  | FP32bit_LSW | R/W |  | 40057 |
|  | Weight interval [mg, g, kg, etc...] to define if a weight <br> measure is stable, with reference to the net weight | 1 [mg, g, <br> kg, etc...] |  |  |  |


| Delta time <br> LSW | Word | R/W |  | 40058 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Time interval to define if a weight measure is stable, with <br> reference to the net weight | 1$(=100$ <br> $[\mathrm{msec}])$ |  |  |

$12-9$
A weight measure is stable if the weight variation of net weight (reg.40064, 40065), in a given time interval ("delta time", reg.40058), is less than weight interval ("delta weight", reg.40056, 40057 floating point); time interval ("delta time") and weight interval ("delta weight") are settable by "stable weight condition" window.

Digital output parameters are shown in the following table.

| Digital output | Bit | R/W |  | 40059 |
| :---: | :---: | :---: | :---: | :---: |
|  | Digital output behavior if the selected condition of digital output occurs (see bit[6:0]). <br> $0=$ if the selected condition of digital output occurs, digital output (open normally) switches from open to closed (nozero current through external load) <br> $1=$ if the selected condition of digital output occurs, digital output (closed normally) switches from closed to open (no current through external load) |  | 0 | Bit 7 |
|  | Condition of digital output. It is possible to select one of the following setting: <br> $0=$ gross weight is greater than load cell end scale 1 =weight is stable and net weight is greater than Threshold $2=$ weight is stable |  | 0 | Bit [6:0] |
| Threshold MSW | $\checkmark$ FP32bit_MSW | R/W |  | 40054 |
| Threshold LSW | FP32bit_LSW | R/W |  | 40055 |
|  | Threshold of net weight (see bit40059.[6:0]) |  | 0 |  |

## Setting using PLC

There are two alternative modalities to configure the Z-SG module using PLC (Programmable Logic Controller):

## CALIBRATION WITH KNOWN WEIGHT

1
WARNING
Gross weight (tare + known weight) must not to exceed load cell end scale, to avoid serious damage to the cell.

## 1) Power off the module before configuring it by Dip-Switches to avoid serious damage due to electrostatic discharges.

2) Switch Dip-Switch SW2-1 as desired: "OFF"=digital input enabled, digital output disabled; "ON"=digital input disabled, digital output enabled
3) Switch Dip-Switches SW2-2 and SW2-3 as desired: see Dip-Switches table
4) Switch Dip-Switches SW2-4 to "OFF" and SW2-5 to "ON"
5) Switch Dip-Switches SW2-6 to "ON", SW2-7 to "ON", SW2-8 to "ON"
6) Power on the Z-SG module
7) Write sensitivity value in reg. 40044,40045 (FP)
8) Write known weight value in reg. 40048,40049 (FP)
9) Reset the module (write $0 \times \mathrm{ABAC}=43948$ in reg.40068)

I- -3 New sensitivity and known weight are saved in Z-SG module.
10) Put the tare on the balance
11) Save the tare value in EEPROM memory (write 0xC2FA=49914 in reg.40068)
12) Put the known weight on the tare
13) Save the known weight in EEPROM memory (write $0 \times C 60 C=50700$ in reg.40068)

## FACTORY CALIBRATION

1) Power off the module before configuring it by Dip-Switches to avoid serious damage due to electrostatic discharges.
2) Switch Dip-Switch SW2-1 as desired: "OFF"=digital input enabled, digital output disabled; "ON"=digital input disabled, digital output enabled
3) Switch Dip-Switches SW2-2 and SW2-3 as desired: see Dip-Switches table
4) Switch Dip-Switches SW2-4 to "OFF" and SW2-5 to "OFF"
5) Switch Dip-Switches SW2-6 to "ON", SW2-7 to "ON", SW2-8 to "ON"
6) Power on the Z-SG module
7) Write sensitivity value in reg. 40044,40045 (FP)
8) Write load cell end scale in reg. 40046,40047 (FP)
$1\left[-\int\right.$ New sensitivity and load cell end scale are saved in Z-SG module.
9) Put the tare on the balance
10) Save the tare value in EEPROM memory (write 0xC2FA=49914 in reg. 40068

## Setting by calibration button (or digital input)

There are two alternative modalities to configure the Z-SG module by calibration button (if the user has not a Personal Computer and has a known weight that corresponds to the analog output end scale).

## CALIBRATION WITH KNOWN WEIGHT USING CALIBRATION BUTTON (OR DIGITAL INPUT)

## WARNING

Gross weight (tare + known weight) must not to exceed load cell end scale, to avoid serious damage to the cell.

1) Power off the module before configuring it by Dip-Switches to avoid serious damage due to electrostatic discharges.
2) Switch the Dip-Switches SW2-4 to "ON" and SW2-5 to "ON". In this way, setting by calibration button is possible.
3) Switch the Dip-Switch SW2-1 to "OFF". In this way, calibration with known weight using calibration button (or digital input) is possible.
4) Switch the Dip-Switches SW2-2 and SW2-3 as shown in Dip-Switches table, to select one of the possible modalities of analog output.
5) Switch the Dip-Switches SW2-6, SW2-7, SW2-8 to choose the load cell sensitivity (see DipSwitch table)
6) Power on the module
7) Keep pushed the calibration button (or in alternative use digital input signal) until LED ERR is "ON"
8) Release the calibration button
9) Control that the LED ERR is flashing
10) Put the tare on the load cell
11) Keep pushed the calibration button (or in alternative use digital input signal) until LED ERR switches from flashing to "OFF"

D -3 The Z-SG module has acquired the tare value.
12) Keep pushed the calibration button (or in alternative use digital input signal) until LED ERR is "ON"
13) Release the calibration button
14) Control that the LED ERR is flashing
15) Put the known weight on the tare
16) Keep pushed the calibration button (or in alternative use digital input signal) until LED ERR switches from flashing to "OFF"

D- -3 The Z-SG module has acquired the known weight value.
17) Power off the module
18) Switch the Dip-Switches SW2-4 to "OFF" and SW2-5 to "ON". In this way, Z-SG module is calibrated.
19) Power on the module

D- $\rightarrow$ When calibration procedure is ended, it is possible to calibrate the Z-SG by digital input or by calibration button (after switching SW2-1 to "OFF": digital input is enabled). If a digital signal commutation (from " 0 " to " 1 ") occurs (through screw terminals 1-6), a tare value is saved in RAM memory. This value is erased if the module is power off or when a new digital signal commutation (from "0" to " 1 ") occurs (through screw terminals 1-6).
[ -3 If the module is power off during this procedure, calibration setting is lost. Restart the calibration procedure from the first point.

## FACTORY CALIBRATION USING CALIBRATION BUTTON (OR DIGITAL INPUT)

Gross weight (tare + known weight) must not to exceed load cell end scale, to avoid serious damage to the cell.

## 1) Power off the module before configuring it by Dip-Switches to avoid serious damage due to electrostatic discharges.

2) Switch the Dip-Switches SW2-4 to "ON" and SW2-5 to "OFF". In this way, factory calibration using calibration button (or digital input). It is possible to acquire tare value by digital input or calibration button.
3) Switch the Dip-Switch SW2-1 to "OFF". In this way, calibration button for digital input (used during calibration procedure) is enabled and it is possible to acquire tare value.
4) Switch the Dip-Switches SW2-2 and SW2-3 as shown in Dip-Switches table, to select one of the possible modalities of analog output.
5) Switch the Dip-Switches SW2-6, SW2-7, SW2-8 to choose the load cell sensitivity (see DipSwitch table)
6) Power on the module
7) Put the tare on the load cell
8) Keep pushed the calibration button (or in alternative use digital input signal) until LED ERR is "ON"

D -3 The Z-SG module has acquired tare value: this value is saved in EEPROM (keep saved when the module is power off).
9) Power off the module
10) Switch the Dip-Switches SW2-4 to "OFF" and SW2-5 to "OFF". In this way, Z-SG module is calibrated.
11) Power on the module

D- $\leftrightarrows$ When calibration procedure is ended, it is possible to calibrate the Z-SG by digital input or by calibration button (after switching SW2-1 to "OFF": digital input is enabled). If a digital signal commutation (from " 0 " to " 1 ") occurs (through screw terminals $1-6$ ), a tare value is saved in RAM memory. This value is erased if the module is power off or when a new digital signal commutation (from " 0 " to " 1 ") occurs (through screw terminals 1-6).
$1-3$ If the module is power off during this procedure, calibration setting is lost. Restart the calibration procedure from the first point.
$D-3$ Analog output end scale is related to load cell end scale, with the following equation:

$$
\text { Real end scale = Load cell end scale }- \text { tare }
$$

## Example:

If load cell end scale is equal to 50 kg , tare is equal to 10 kg and analog output scale range is $0 . .10 \mathrm{~V}$, real end scale is

$$
\text { Real end scale }=50-10=40 \mathrm{~kg}
$$

If technical net weight is equal to real end scale, analog output will result

$$
\frac{50 \mathrm{~kg}-10 \mathrm{~kg}}{50 \mathrm{~kg}} \times 100=80 \%
$$

and $80 \%$ corresponds to an analog output equal to 8 V .

## LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| ERR | Blinking light | See "Setting by calibration button" |
|  | Turn off after 3 <br> seconds | See "Setting by calibration button" |
| RX | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
| TX | Blinking light | The module sent a data packet |

## Seneca Z-PC Line module: Z-DAQ-PID

The Z-DAQ-PID module acquires 1 universal input signal (voltage, current, potentiometer, thermo-couple, thermo-resistance, milli-voltmeter) and converts it to an analog format (with PID regulation), sent through 1 universal and isolated output signal (voltage, current).

## General characteristics

> Three operating modalities: conversion with PID regulator, conversion without PID regulator, manual (constant output configurated through ModBUS register)
$>$ Two output types: analog or ON/OFF (time of high-state digital signal is directly proportional to the analog signal)
> Possible inputs: voltage type, current type, potentiometer type, thermocouple (TC) type, RTD (Resistance Temperature Detector) type, millivoltmeter type
> Possible outputs: voltage type, active current type, passive current type
> Management of: slew-rate, burn-out, output limiters
$>$ Configuration of the module (node) address and baudrate by Dip-Switches
$>$ It's possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
> Switching automatically RS485 to RS232 or vice versa

## Features

| INPUT |  |
| :---: | :---: |
| Number | 1 |
| Resolution | 14 bits |
| Sampling time | Configurable between: 5 ms ("Fast", no rejection), 16.66 ms (rejection to 60 Hz ) or 20 ms (rejection to 50 Hz ) |
| Filter | Configurable between: 0 (no filter is applied), from 1 (min) to 19 (max) |
| Response time | Sampling time +6 ms |
| Voltage-type IN | Scale range is configurable: from 0 V to 10 V . Input impedance: $>5 \mathrm{M} \Omega$ |
| Current-type IN (mApassive module/mAactive module) | Scale range is configurable: from 0 mA to 20 mA . Internal shunt: $50 \Omega$.lt's possible to power the sensor by: itself (mA-passive module) or module (mA-active module) using \#7 screw terminal (max 25 mA to max 17 V , short-circuited protected) |
| Potentiometer-type IN | Scale range is configurable: from $1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ (with parallel resistor $\mathrm{R}=330 \Omega$ to connect externally). Excitation current:1 mA. Input impedance: $>5 \mathrm{M} \Omega$ |
| Thermocouple-type in | For TC type: J, K, R, S, T, B, E, N. Input impedance:>5 M $\Omega$. Automatic detection if a TC interruption occurs |
| RTD-type IN | For RTD type: PT100, PT500, PT1000, NI100. Resistance measure (for 2,3,4-wires connection) and wire-resistance measure (for 3,4 -wires connection). Excitation current:1.1 mA (PT100) and $0.11 \mathrm{~mA}($ PT1000, PT500). Automatic detection if a wire or RTD interruption occurs |
| Millivoltmeter-type IN | Scale range is configurable: from -10 mV to 80 mV . Input impedance: $>5 \mathrm{M} \Omega$ |


| Errors related to max <br> measuring range | Accuracy | Thermal <br> stability | Linearity error | EMI |
| :--- | :--- | :--- | :--- | :--- |
| Voltage or current-type <br> input | $0.1 \%$ | $0.01 \% /{ }^{\circ} \mathrm{K}$ | $0.05 \%$ | $<1 \%(2)$ |
| TC-type input: <br> J,K,E,T,N | $0.1 \%$ | $0.01 \% /{ }^{\circ} \mathrm{K}$ | $0.2^{\circ} \mathrm{C}$ | $<1 \%(2)$ |
| TC-type input:R,S | $0.1 \%$ | $0.01 \% /^{\circ} \mathrm{K}$ | $0.5^{\circ} \mathrm{C}$ | $<1 \%(2)$ |
| TC-type input:B (3) | $0.1 \%$ | $0.01 \% /^{\circ} \mathrm{K}$ | $1.5^{\circ} \mathrm{C}$ | $<1 \%(2)$ |
| Cold junction <br> compensation (for TC- <br> type input) | $2^{\circ} \mathrm{C}$ between <br> $0-50^{\circ} \mathrm{C}$ | $/$ | $/$ | $/$ |
| POT-type IN | $0.1 \%$ | $0.01 \% /{ }^{\circ} \mathrm{K}$ | $0.1 \%$ | $<1 \%$ |
| RTD-type IN (4) | $0.1 \%$ | $0.01 \% /{ }^{\circ} \mathrm{K}$ | $0.02 \% ~\left(\right.$ if $\left.\mathrm{t}>0^{\circ} \mathrm{C}\right)$ <br> $0.05 \% ~\left(\right.$ if t $\left.<0^{\circ} \mathrm{C}\right)$ | $<1 \%(5)$ |

(1) For the input scale ranges, see "Connections"
(2) Influence of wire resistance: $0.1 \mu \mathrm{~V} / \Omega$
(3) Output zero if $\mathrm{t}<400^{\circ} \mathrm{C}$
(4) For RTD type: PT100, PT500, PT1000, NI100. All the errors have to be calculated with reference to resistive value
(5) Influence of wires resistance: $0.005 \% / \Omega, \max 20 \Omega$

| OUTPUT | 1 |
| :--- | :--- |
| Number | 14 bit |
| Resolution | The output signal can be amplitude-limited by an "output limiter" |
| Signal-amplitude <br> limiting | Configurable between: $0-5 \mathrm{~V}, 0-10 \mathrm{~V}$ (with minimum load <br> resistance: $1 \mathrm{k} \Omega)$. Saturation value: 10.5 V |
| Voltage-type OUT | OUT <br> Configurable between: $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ (with maximum load <br> resistance: $600 \Omega$ ). Saturation value: 21 mA . "Active current" $=$ the <br> output: already powered on, needs to be connected to the passive <br> module; "passive current" $=$ the output: powered off, needs to be <br> connected to the active module |
| (active or passive) |  |


| Errors related to max <br> measuring range | Errors related <br> to max <br> measuring <br> range | Accuracy | Thermal <br> stability | Linearity <br> error |
| :--- | :--- | :--- | :--- | :--- |
| Voltage-type OUT | $0.1 \%$ | $0.01 \% /^{\circ} \mathrm{K}$ | $0.01 \%$ | $<1 \%$ |
| Voltage-type OUT <br> (active or passive) | $0.1 \%$ | $0.01 \% /^{\circ} \mathrm{K}$ | $0.01 \%$ | $<1 \%$ |

CONNECTIONS

RS485 interface | RS232 interface |
| :--- | :--- |
| 1500 Vac ISOLATIONS |

IDC10 connector
Jack stereo 3.5 mm connector: plugs into COM port
Between: power supply, ModBUS RS485, analog input, analog output


| POWER SUPPLY |  |
| :--- | :--- |
| Supply voltage | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| Power <br> consumption | Min: $0.5 \mathrm{~W} ;$ Max: 2 W |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements).

## Connections



## D -3 For potentiometer input connection: with $R=330 \Omega$ ( $R$ needs to be added externally), $\mathrm{P}=1 \mathrm{k} \Omega-100 \mathrm{k} \Omega$.

In particular the input scale range values, for thermocouple-type input selected, are shown in the following table.

| TC-type | Scale range | TC-type | Scale range |
| :--- | :--- | :--- | :--- |
| J | $-210^{\circ} \mathrm{C} . .1200^{\circ} \mathrm{C}$ | S | $-50^{\circ} \mathrm{C} . .1768^{\circ} \mathrm{C}$ |
| K | $-200^{\circ} \mathrm{C} . .1372^{\circ} \mathrm{C}$ | R | $-50^{\circ} \mathrm{C} . .1768^{\circ} \mathrm{C}$ |
| E | $-200^{\circ} \mathrm{C} . .1000^{\circ} \mathrm{C}$ | B | $250^{\circ} \mathrm{C} . .1820^{\circ} \mathrm{C}$ |
| N | $-210^{\circ} \mathrm{C} . .1300^{\circ} \mathrm{C}$ | T | $-200^{\circ} \mathrm{C} . .400^{\circ} \mathrm{C}$ |

The input scale range values, for RTD-type input selected, are shown in the following table.

| RTD-type | Scale range | RTD-type | Scale range |
| :--- | :--- | :--- | :--- |
| PT100 | $-210^{\circ} \mathrm{C} .650^{\circ} \mathrm{C}$ | PT1000 | $-200^{\circ} \mathrm{C} .210^{\circ} \mathrm{C}$ |
| PT500 | $-200^{\circ} \mathrm{C} . .750^{\circ} \mathrm{C}$ | $\mathrm{N} I 100$ | $-60^{\circ} \mathrm{C} . .250^{\circ} \mathrm{C}$ |

## Functioning

There are six possible functioning modalities of the Z-DAQ-PID module, with reference to the following figure:

- conversion with PID, analog output
- conversion with PID, ON/OFF output
- conversion without PID, analog output
- conversion without PID, ON/OFF output
- manual (constant output), analog output
- manual (constant output), ON/OFF output

With reference to the following figure, the lowest part shows the Z-DAQ-PID setting procedure in three steps: input setting, operating modality setting, output setting.


In particular, there are three operating modalities, each of them allows to supply a ON/OFF output or an analog output:

| Operating modality | Description |
| :--- | :--- |
| Conversion with PID | The analog output is a function of the analog input <br> processed by the PID transfer function. Moreover, <br> analog output is directly proportional to the analog input |
| Conversion without PID | The analog output is directly proportional to the analog <br> input |
| Manual <br> (constant output without <br> PID) | The analog output is input-indipendent. Anyhow, the <br> input is acquired and can be found in the RS485 <br> registers (only reading) |

Slew rate allows to limit the slope of the signal (see reg. 40031 and 40032) and burn-out allows to overwrite the OUT-Fault value (reg.40020, 40021) to the reg.40105, 40106 (burn-out overwriting is available only for analog output).

Operating modality is configurable by software or by FunctionMod register (40007.[15:8]), with reference to the "RS485 registers table".

There are two output type of Z-DAQ-PID, regardless of operating modality:

| Out type | Description |
| :--- | :--- |
| Analog | OUT is an analog signal |
| ON-OFF <br> (see the following figures) | OUT is a ON/OFF signal. High state output is OUT-ES, <br> low state output is OUT-SS |

If out type is "ON/OFF", the Z-DAQ-PID module allows to have a ON/OFF output with activation time $\mathrm{t}_{\mathrm{ON}}$ (time corresponding to the high-state output) directly proportional to $\mathrm{OUT}_{\mathrm{L}}$.

To understand the ON/OFF out type functioning, see the following figure.
$\mathrm{T}_{\text {ON }}$ IS DIRECTLY PROPORTIONAL TO OUT ${ }_{A}$


IN THIS EXAMPLE, $T_{\text {N }}$ DECREASES BECAUSE OUT $_{\mathrm{B}}$ IS LESS THAN OUT ${ }_{\mathrm{A}}$

It is possible to limit inferiorly the time of high-state ON/OFF output (reg.40029) and to limit inferiorly the time of low-state ON/OFF output (reg.40030). The cycle time is reg. 40028 (constant frequency of ON/OFF output=1/cycle time).

OUTPUT (reg.40105,40106)
(digital modality: it can be V or mA )

OUT-ES
(reg.40014, 40015) is «High state»

OUT-SS
(reg.40012,40013) is «Low state»


## Most important operating modality: CONVERSION WITH PID

In "Conversion with PID" operating modality, the output (analog or ON/OFF) is a function of the analog input processed by the PID transfer function. Moreover, output is directly proportional to the analog input.

PID regulation allows to incline input signal PV (process value) to SP (set point value) with particular properties (rise time, overshoot, steady-state error, setting time, etc...). In the following figure is shown the Z-DAQ-PID module used as PID.


In particular, "e" means the difference between set-point and process-value:
Signal error e = (process value - set point) means PID regulation direct-type (for example: used for cooling)

Signal error $\mathrm{e}=$ (set point - process value) means PID regulation reverse-type (for example: used for heating)

The PID regulation is described by the following parameters:

| Term | Parameter | Meaning | Register |
| :--- | :--- | :--- | :--- |
| Proportional | BP | Proportional band | 40025 |
| Integral | Ti | Integral time | 40026 |
| Derivative | Td | Derivative time | 40027 |

where Tsample means the PID sampling time (it is equal to 100 ms ).

## If BP decreases

| Proportional action strengths | Proportional action weaknesses |
| :--- | :--- |
| Rise time decreases | Ringing and overshoot increases |
| Steady-state error decreases |  |

## If Ti decreases

| Integral action strengths | Integral action weaknesses |
| :--- | :--- |
| Steady-state error is equal to zero <br> (if input is a constant value) | Rise time increases |
|  | Settling time increases |

## If Td increases

| Derivative action strengths | Derivative action weaknesses |
| :--- | :--- |
| Settling time decreases | Noise is amplified |

## Setting

## Input setting

To set Z-DAQ-PID input characteristics, configure the following registers:

| Description of register | Option/Meaning | Address |
| :--- | :--- | :--- |
| Input type | $\mathrm{V}, \mathrm{mA}, \%,{ }^{\circ} \mathrm{C}, \Omega, \mathrm{mV}$ <br> (see RS485 register table) | 40003 |
| Cold-junction <br> compensation (if TC-type <br> input) | $0=$ deactivated <br> $1=$ activated | 40005.8 |
| Input start scale | Value in [V, mA, \%, $\left.{ }^{\circ} \mathrm{C}, \Omega, \mathrm{mV}\right]$ | $40008(\mathrm{MSW})$ <br> $40009(\mathrm{LSW})$ |
| Input end scale | Value in [V, mA, \%, $\left.{ }^{\circ} \mathrm{C}, \Omega, \mathrm{mV}\right]$ | $40010(\mathrm{MSW})$ |
| $40011(\mathrm{LSW})$ |  |  |
| Filter applied to input <br> signal | $0=$ deactivated <br> $1-19=$ filtering values | $40005 .[7: 0]$ |
| Rejection | $0 \mathrm{~b} 00=50 \mathrm{~Hz}$ rejection <br> $0 \mathrm{b01=60Hz} \mathrm{rejection}$ <br> $0 \mathrm{~b} 10=$ Fast (no rejection) | $40006 .[9: 8]$ |

## Operating modality setting

To set Z-DAQ-PID functioning modality characteristics, configure the following registers:

| Description of register | Option/Meaning | Address |
| :--- | :--- | :--- |
| Functioning modality | 0=Conversion with PID, analog output | 40007.[15:8] |
|  | 1=Conversion without PID, analog |  |
|  | output |  |
|  | 2=Conversion with PID, ON/OFF output |  |
|  | 3=Conversion without PID, ON/OFF |  |
|  | output |  |
|  | 4=Manual, analog output |  |
|  | 5=Manual, ON/OFF output |  |


| Cycle time | Time in [sec/10] <br> (if output modality=ON/OFF) | 40028 |
| :--- | :--- | :--- |
| Minimum time of high- <br> state ON/OFF output | Time in [sec/10] <br> (if output modality=ON/OFF) | 40029 |
| Minimum time of low-state <br> ON/OFF output | Time in [sec/10] <br> (if output modality=ON/OFF) | 40030 |


| SlewRate enabling | $0=$ deactivated <br> $1=$ activated | 40031 |
| :--- | :--- | :--- |
| SlewRate | Value in $[\% / \mathrm{sec}]$ | 40032 |


| PID regulation sign | 0=direct-type (example: cooling) <br> 1=reverse-type (example: heating) <br> (if operating modality=conversion with <br> PID) | $40007 .[7: 0]$ |
| :--- | :--- | :--- |
| Set point <br> (it corresponds to the <br> process-value desired) | Value in [\%], with reference to the input <br> scale range <br> (if operating modality=conversion with <br> PID) | 40022 (MSW) <br> 40023 (LSW) |


| Proportional band (BP) | Value in [\%], with reference to the input <br> scale range <br> (if operating modality=conversion with <br> PID) | 40025 |
| :--- | :--- | :--- |
| Integral time | Time in [sec/10] <br> (if operating modality=conversion with <br> PID) | 40026 |
| Derivative time | Time in [sec/10] <br> (if operating modality=conversion with <br> PID) | 40027 |
| Offset | Value in [\%/100], with reference to the <br> output scale range <br> (if operating modality=conversion with <br> PID) | 40024 |

## Output setting

To set Z-DAQ-PID output characteristics, configure the following registers:

| Description of register | Option/Meaning | Address |
| :--- | :--- | :--- |
| Output type | O=current <br> 1=voltage | 40004.8 |
| Output current type | O=active current (the module supplies <br> the loop) <br> 1=passive current (the sensor supplies <br> the loop) <br> (if output type is current) | 40004.12 |
| Output start scale | Value in [V, mA] | 40012 (MSW) <br> 40013 (LSW) |
| Output end scale | Value in [V, mA] | 40014 (MSW) <br> 40015 (LSW) |


| Output limiter enabling | 0=deactivated <br> $1=$ activated | 40004.0 |
| :--- | :--- | :--- |
| Limit inferior of the output <br> limiter | Value in [\%], with reference to the output <br> scale range | 40018 (MSW) <br> $40019(\mathrm{LSW})$ |
| Limit superior of the <br> output limiter | Value in [\%], with reference to the output <br> scale range | 40016 (MSW) <br> 40017 (LSW) |

## Dip-switches table

10 In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).


## RS485 register table

| Name | Range | Interpretation of register | R/W | Default | Address |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MachinelD | 1 | MSB, LSB | R |  | 40001 |
|  | Id_Code (Module ID) |  |  | 0x42 | Bit [15:8] |
|  | Ext_Rev (Module version) |  |  |  | Bit [7:0] |
| FWREV | / | Word | R |  | 40002 |
|  | Firmware Code |  |  |  |  |
| Errors | These bits aren't used |  |  |  | 40069 |
|  |  |  |  | 1 | Bit [15:6] |
|  | Over-scale range error for acquired input (over hardware limits): $0=$ there isn't; $1=$ there is |  |  | 1 | Bit 5 |
|  | Amplitude detection of acquired input signal: $0=$ amplitude is between input start scale and input end scale; $1=$ amplitude is less than input start scale |  |  | / | Bit 4 |
|  | Amplitude detection of acquired input signal: $0=$ amplitude is between input start scale and input end scale; $1=$ amplitude is greater than input end scale |  |  | / | Bit 3 |
|  | Input burn-out error (if bit40006.0=1 and the input is greater than input scale range): $0=$ there isn't; $1=$ there is. |  |  | / | Bit 2 |
|  | Temperature acquisition error in the thermocouple coldjunctions (if TC-type input): $0=$ there isn't; $1=$ there is |  |  | 1 | Bit 1 |
|  | Memory loss-of-data: $0=$ there isn't; $1=$ there is |  |  | / | Bit 0 |
| Rejection Burn | 1 | Bit | R/W |  | 40006 |
|  | These bits aren't used |  |  | 1 | Bit[15:10] |


|  | Rejection: $0 \mathrm{~b} 00=50 \mathrm{~Hz} ; 0 \mathrm{~b} 01=60 \mathrm{~Hz} ; 0 \mathrm{~b} 10=\mathrm{No}$ rejection ("fast" sampling) |  |  | 0b00 | Bit [9:8] |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | These bits aren't used |  |  | 1 | Bit [7:1] |
|  | Burn-out enabling: $0=$ deactivated; $1=$ activated (if 1 : fault output value is overwritten into output register) |  |  | 0 | Bit 0 |
| Filter Cold-junction | I | Bit, LSB | R/W |  | 40005 |
|  | These bits aren't used |  |  | 1 | Bit [15:9] |
|  | Cold-junction compensation (if TC-type input):$0=$ deactivated; $1=$ activated Filter applied to the acquired input signal: 0=deactivated; |  |  | 0 | Bit 8 |
|  |  |  |  | 0 | Bit [7:0] |
| IN Type | 1 | Word | R/W |  | 40003 |
|  | Input-type: 0=current; 1=voltage; 2=potentiometer; 3=TC J; 4=TC K; $5=$ TC R; $6=$ TC S; $7=$ TC T; $8=$ TC B; $9=$ TC E; $10=T C$ N; 11= 2-wires PT100; 12=3-wires PT100; 13=4wires PT100; 14=2-wires NI100; 15=3-wires NI100; 16=4wires NI100; 17=2-wires PT500; 18=3-wires PT500; 19=4wires PT500; 20=2-wires PT1000; 21=3-wires PT1000; 22=4-wires PT1000; 23=millivoltmeter |  |  | 0 |  |
| Address Parity | 1 | MSB, LSB | R/W |  | 40033 |
|  | Address for RS485 (address of module/node if parameters are configurated by memory modality): from $0 \times 01=1$ to $0 x F F=255$ |  |  | 1 | Bit [15:8] |
|  | Parity for RS485: 0=there isn't; 1=even parity; 2=odd parity |  |  | 0 | Bit [7:0] |
| Baudrate Delay | 1 | MSB, LSB | R/W |  | 40034 |
|  | Baud-rate for RS485 (baud-rate of module/node if parameters are configurated by memory modality):$\begin{aligned} & 0=1200 ; 1=2400 ; 2=4800 ; 3=9600 ; 4=19200 ; 5=38400 ; \\ & 6=57600 ; 7=115200 \end{aligned}$ |  |  | 38400 | Bit [15:8] |
|  | Delay for RS485 (delay of communication response: it represents the number of the pauses(*) between the end of $R x$ message and the start of Tx message): from $0 \times 00=0$ to $0 x F F=255$ <br> (*) 1 pause $=6$ characters |  |  | 0 | Bit [7:0] |
| Function modality | / | Word | R/W |  | 40007 |
|  | Functioning modality: <br> $0=$ Conversion with PID, analog output <br> 1=Conversion without PID, analog output <br> 2=Conversion with PID, ON/OFF output <br> 3=Conversion without PID, ON/OFF output <br> 4=Manual, analog output <br> 5=Manual, ON/OFF output |  |  | 0 | Bit [15:8] |
| IN-SS MSW | See "Input" | FP-32bit_MSW | R/W |  | 40008 |
| IN-SS LSW |  | FP-32bit_LSW | R/W |  | 40009 |
|  | Input Start Scale: [mA] (if current-type input); [V] (if voltage-type input) [mV] (if millivoltmeter-type input); [\%] (if potentiometer-type input); $\left[{ }^{\circ} \mathrm{C}\right]$ (if TC or RTD-type input) |  |  | 0 [mA] |  |
| IN-ES MSW | See "Input" | FP-32bit_MSW | R/W |  | 40010 |
| IN-ES LSW |  | FP-32bit_LSW | R/W |  | 40011 |
|  | Input End Scale: [mA] (if current-type input); [V] (if voltagetype input or millivoltmeter-type input); [\%] (if potentiometer-type input); [ $\left.{ }^{\circ} \mathrm{C}\right]$ (if TC or RTD-type input) |  |  | 20 [mA] |  |


| IN MSW Percent | Between:0-1 | FP-32bit_MSW | R |  | 40110 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IN Percent LSW |  | FP-32bit_LSW | R |  | 40111 |
|  | Percent measure of input: [\%] with reference to the Input Scale range (for selected input-type) (if it is equal to 0 , it corresponds to the $0 \%$ of the Input Scale range; if it is equal to 1, it corresponds to the $100 \%$ of the Input Scale range) |  |  | / |  |
| mA MSW | FP between: IN-SS, IN-ES | FP-32bit_MSW | R |  | 40091 |
| mA LSW |  | FP-32bit_LSW | R |  | 40092 |
|  | Electric measure of input: [mA] (if current-type input) |  |  | / |  |
| V MSW | FP between: IN-SS, IN-ES | FP-32bit_MSW | R |  | 40093 |
| V LSW |  | FP-32bit_LSW | R |  | 40094 |
|  | Electric measure of input: [V] (if voltage-type input) |  |  | / |  |
| POT MSW | FP between: IN-SS, IN-ES | FP-32bit_MSW | R |  | 40099 |
| POT LSW |  | FP-32bit_LSW | R |  | 40100 |
|  | Electric measure of input: [\%] (if potentiometer-type input) |  |  | / |  |
| TC MSW | FP between: IN-SS, IN-ES | FP-32bit_MSW | R |  | 40083 |
| TC LSW |  | FP-32bit_LSW | R |  | 40084 |
|  | Electric measure of input: [mV] (if TC-type input) without cold-junction compensation (if bit40005.8=0), with coldjunction compensation (if bit40005.8=1) |  |  | / |  |
| TCT MSW | FP between: IN-SS, IN-ES | FP-32bit_MSW | R |  | 40085 |
| TCT LSW |  | FP-32bit_LSW | R |  | 40086 |
|  | Electric measure of input: [ ${ }^{\circ} \mathrm{C}$ ] (if TC-type input) with compensation |  |  |  |  |
| CJ MSW | / Equivalent electric measure | FP-32bit_MSW | R |  | 40079 |
| CJ LSW |  | FP-32bit_LSW | R |  | 40080 |
|  | Equivalent electric measure of the cold-junction: [mV] (if TC-type input) |  |  | / |  |
| RTDO MSW | / | FP-32bit_MSW | R |  | 40087 |
| RTDO LSW |  | FP-32bit_LSW | R |  | 40088 |
|  | Electric measure of input: [ $\Omega$ ] (if RTD-type input) |  |  | / |  |
| RTD MSW | FP between: IN-SS, IN-ES | FP-32bit_MSW | R |  | 40089 |
| RTD LSW |  | FP-32bit_LSW | R |  | 40090 |
|  | Electric measure of input: [ ${ }^{\circ} \mathrm{C}$ ] (if RTD-type input) |  |  | 1 |  |
| 3wires-RTD MSW | / | FP-32bit_MSW | R |  | 40095 |
| 3wires-RTD LSW |  | FP-32bit_LSW | R |  | 40096 |
|  | Measure of the wire resistance for 3 wires RTD connection [ $\Omega$ ] (if RTD-type input) |  |  | / |  |
| $\begin{aligned} & \text { 4wires-RTD } \\ & \text { MSW } \end{aligned}$ | / | FP-32bit_MSW | R |  | 40097 |
| 4wires-RTD LSW |  | FP-32bit_LSW | R |  | 40098 |
|  | Measure of the wire resistance for 4 wires RTD connection [ $\Omega$ ] (if RTD-type input) |  |  | / |  |




## LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
| ERR | Blinking light | The module has at least one of the errors described in RS485 <br> Registers table |
|  | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
| TX | Blinking light | The module sent a data packet |

## Seneca Z-PC Line module: S203T

The S203T module is a three-phase network analyzer for electric-line voltage up to 600Vac and electric-line current up to 100 mA * CT ratio, tipically up to $100 \mathrm{~A}(50 \mathrm{~Hz}$ or 60 Hz ). The module has an analog output, electrical value directly proportional to the selected input: voltage-type output or current-type output. The electrical value (analog output) is available on screw terminals and the normalized value is available on RS485 registers.

## General characteristics

$>$ It is possible to detect, with reference to the electrical-line and load connected to its: RMS voltage, RMS current, active power, reactive power, apparent power, $\cos \Phi$, frequency, energy (for each measure: phase A, phase B, phase C and three-phase values are available, except frequency)
> Normalized start/end scale between $0 . .+10000$ (for RMS voltage, RMS current, active power, apparent power) or between $\pm 10000$ (for reactive power, $\cos \Phi$ )
$>$ It is possible to reset the energy values
$\rightarrow$ It is possible to manage connections with high power devices using current transformers
$>$ It is possible to connect the module using single-phase insertion, ARON insertion (three-phase without neutral) or 4-wires insertion (three-phase with neutral)
$>$ Configuration of the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to configure the electrical-line frequency, output (electrical value), single/three phase application, rescaled-input type, insertion-type and maximum current by Dip-Switches

## Features

| INPUT |  |
| :---: | :---: |
| Number | 3 (Phase A, phase B, phase C) + Neutral |
| Accuracy | 0.2\% of E.E.S. (Voltmeter, amperemeter, wattmeter) |
|  | Thermal stability: < $100 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ |
|  | EMI: < 1\% |
| Protection | This module provides inputs protection against the ESD (up to 4 kV ) |
| Voltage-type IN | E.S.S./E.E.S.(Electrical Start/End Scale) between: 0..600Vac. Input impedance: $800 \mathrm{k} \Omega$ |
| Current-type IN | E.S.S./E.E.S.(Electrical Start/End Scale) between: 0...100A: ( $0 . . .25$ or $0 \ldots 100 \mathrm{mArms})^{*} \mathrm{CT}$. Max peak factor: 4; max current: (100 or 400 mApeak)*CT. Input impedance: $1 \Omega$ |
| OUTPUT |  |
| Number | 1 |
| Type | Voltage, active current, passive current |
| Accuracy | $0.1 \%$ of output scale range |
| Cable max resistance at secondary circuit | $3 \Omega$ (two cables necessary to connect CT secondary to S203T) |
| Response time (10\%..90\%) | 0.4s |
| Voltage-type OUT | Output scale range configurable between: $0-10 \mathrm{~V}$ or $0-5 \mathrm{~V}$ (minimum resistance that can be connected: $2 \mathrm{k} \Omega$ ). Saturation value is 11 V |
| Current-type OUT | Output scale range configurable between: $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ (max resistance that can be connected: $500 \Omega$ ). Saturation value is 22 mA |


| CONNECTIONS |  |
| :--- | :--- |
| RS485 interface | Screw terminals 31 (B), 32 (A), 33 (GND) |
| ISOLATIONS | 1500Vac isolation between: power supply, ModBUS RS485 <br> + output <br> 3750 Vac isolation between: input (electric network) and other parts |



POWER SUPPLY

| Supply voltage | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Power <br> consumption | Max: 2.5 W |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.
"Accuracy" terms are guaranteed with reference to the following ranges: RMS voltage $=40 \ldots 600 \mathrm{Vac}, \mathrm{RMS}$ current $=(0.1 \ldots 25$ or $0.4 \ldots 100) \mathrm{mA} \cdot \mathrm{CT}$.

MODULE CASE

| Case-type | DIN 43880, UL94VO plastic material, gray |
| :--- | :--- |
| Dimensions | $105 \times 89 \times 60 \mathrm{~mm}$ |
| Terminal board | Not removable 3-way screw terminals: pitch 5.08 mm , sections |
|  | $2.5 \mathrm{~mm}^{2}$ |
| Protection class | IP20 |



| Screw terminals | Measurement scale range |
| :--- | :--- |
| 13,14 | Connect CT secondary for phase A |
| 15,16 | Connect CT secondary for phase B |
| 17,18 | Connect CT secondary for phase C |
| $19,20,21,22$ | See input connection figure |
| 25,26 | Power supply (10..40Vdc or 19...28Vac; 2.5 W$)$ |
| 27 | LED PWR |
| 28 | LED ERR |
| 29 | LED Tx |
| 30 | LED Rx |
| 31 | RS485 B |
| 32 | RS485 A |
| 33 | RS485 GND |
| $34,35,36$ | See output connection figure |

## Connections

## Input connection

In the following figure are shown typical current transformers (TA25 and TA100), to connect S203T module with electrical line.

$1-3$ Np=turn number of primary; Ns=turn number of secondary.
D- -3 Accuracy class equal to 0.2 is the sum of the accuracy class for S203T module and accuracy class of its current transformer (this is not true for S203TA module).

In the following figure are shown input connections for three insertion types: single-phase, ARON (three-phase with two CT) and 4-wires (three-phase with three CT).


## WARNING

ONLY the connections shown in the following figure for S203T module are allowed!
If a negative power is measured, check current transformer insertion!

## (1) <br> NOTE

It is forbidden to connect the current transformer secondary to ground.


ARON
(Threephase without neutral)


4 WIRES (Threephase with neutral)


## $10-2$ <br> $14,16,18,22$ screw terminals are connected internally.

Output connection

| Voltage |  | Active module |  | Passive module |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | module supplies current loop |  | ser curr | nsor supplies ent loop |
| 35 34 |  | 36 35 | $0 \leftarrow(A+$ | 36 34 | 0 |  |

D- -3 Shielded cables are recommended to connect the outputs.
$10-8$
It is not possible to obtain an output (electric value) directly proportional to the electricnetwork frequency, energy, reactive power, apparent power (see Dip-switches SW2-6 and SW2-7).

This module allows to associate a electric quantity (RMS voltage, RMS current, active power, cos $\phi$, through Dip-switches) to the analog output value (and normalized measure), as described in the following points:

- if selected electric quantity (single-phase/three-phase, RMS voltage/RMS current/active power/cos $\phi$ ) is less than MinIN (reg.40028, 40029 floating point): normalized measure (reg.40217) is equal to 0 and analog output is $0 \%(0 \mathrm{~V}, 0 \mathrm{~mA}, 4 \mathrm{~mA})$, available through screw terminals;
- if selected electric quantity (single-phase/three-phase, RMS voltage/RMS current/active power/cos $\phi$ ) is greater than MaxIN (reg.40030, 40031 floating point): normalized measure (reg. 40217) is equal to 10000 and analog output is $100 \%$ ( $5 \mathrm{~V}, 10 \mathrm{~V}, 20 \mathrm{~mA}$ ), available through screw terminals;
- if selected electric quantity (single-phase/three-phase, RMS voltage/RMS current/active power/cos $\phi$ ) is between MinIN and MaxIN, analog output (current/voltage) is directly proportional to the selected electric quantity and it is available through screw terminals.

D- -3 To choose if electric quantity is single-phase (it is possible to choose which phase: A, B or C) or three-phase, set reg. 40025.

## RS485 serial port and power supply

POWER SUPPLY
26
25


$$
\begin{gathered}
10 \div 40 \mathrm{VDC} \\
19 \div 28 \mathrm{VAC} \\
2.5 \mathrm{~W}
\end{gathered}
$$

RS485 SERIAL PORT

| 33 | $\varnothing$ | GND |
| :--- | :--- | :--- |
| 32 | $\varnothing$ | A |
| 31 | $\varnothing$ | B |

## Functioning

The S203T module allows to detect and capture the following electric quantity: RMS voltage, RMS current, active power, reactive power, apparent power, frequency, cos $\phi$, energy. For each quantity, it is possible to read phase A, phase B, phase C and three-phase value (except for frequency).

The measure ranges for RMS voltage, RMS current, active power, reactive power, apparent power, energy, $\cos \Phi$, frequency are shown in the following table.

| Possible measures (electric quantities) | Measurement scale range |
| :---: | :---: |
| RMS voltage | $0 \ldots 600 \mathrm{Vac}$ |
| RMS current | $(0 \ldots 25$ or $0 \ldots 100) \mathrm{mA} \cdot \mathrm{CT}$ |
| Active power | $(0 \ldots 15$ or $0 \ldots 60) \mathrm{W} \cdot \mathrm{CT}$ |
| Reactive power | $(0 \ldots 15$ or $0 \ldots 60) \mathrm{VAR} \cdot \mathrm{CT}$ |
| Apparent power | $(0 \ldots 15$ or $0 \ldots 60) \mathrm{VA} \cdot \mathrm{CT}$ |
| Energy | $/$ |
| Cos $\Phi$ | $0 \ldots 1$ |
| Frequency | $40 \ldots 70 \mathrm{~Hz}$ |

The S203T module allows to read floating point measures (for every quantity) and normalized values (except for energy and frequency); in particular, energy values are kept stored if module is power off.

D -3 RMS voltage, RMS current, active power, frequency, energy are measured by S203T directly (for each phase A, B, C); reactive power, apparent power, $\cos \Phi$ and all three-phase values are obtained through processing by S203T.

| Possible measures | Symbol | Measured value | Calculated value | Value |
| :---: | :---: | :---: | :---: | :---: |
| RMS voltage for phase A,B,C | $\mathrm{V}_{\mathrm{A}} \mathrm{V}_{\mathrm{B}} \mathrm{V}_{\mathrm{C}}$ | - |  | 1 |
| Average RMS voltage (threephase) | V |  | $\bullet$ | $\left(\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}+\mathrm{V}_{\mathrm{C}}\right) / 3$ |
| RMS current for phase A,B,C | $I_{A} I_{B} I_{C}$ | - |  | 1 |
| Average RMS current (three-phase) | I |  | - | $\left(I_{A}+I_{B}+I_{C}\right) / 3$ |
| Active power for phase A,B,C | $\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}}$ | $\bullet$ |  | 1 |
| Active power (three-phase) | P |  | - | $\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}$ |
| Reactive power for phase A,B,C | $\mathrm{Q}_{\mathrm{A}} \mathrm{Q}_{\mathrm{B}} \mathrm{Q}_{\mathrm{C}}$ |  | $\bullet$ | $\sqrt{S_{A, B, C}^{2}-P_{A, B, C}^{2}}$ |
| Reactive power (three-phase) | Q |  | $\bullet$ | $\mathrm{Q}_{\mathrm{A}}+\mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{C}}$ |
| Apparent power for phase A,B,C | $\mathrm{S}_{\mathrm{A}} \mathrm{S}_{\mathrm{B}} \mathrm{S}_{\mathrm{C}}$ |  | $\bullet$ | $\mathrm{V}_{\mathrm{A}, \mathrm{B}, \mathrm{C}} \cdot \mathrm{A}_{\mathrm{A}, \mathrm{B}, \mathrm{C}}$ |
| Apparent power (three-phase) | S |  | - | $\mathrm{S}_{\mathrm{A}}+\mathrm{S}_{\mathrm{B}}+\mathrm{S}_{\mathrm{C}}$ |
| Energy for phase A,B,C | $\mathrm{E}_{\mathrm{A}} \mathrm{E}_{\mathrm{B}} \mathrm{E}_{\mathrm{C}}$ | - |  | 1 |
| Energy (three-phase) | E |  | $\bullet$ | $\mathrm{E}_{\mathrm{A}}+\mathrm{E}_{\mathrm{B}}+\mathrm{E}_{C}$ |
| Cos $\Phi$ for phase A,B,C | $\begin{aligned} & \cos \phi_{\mathrm{A}} \cos \phi_{\mathrm{B}} \\ & \cos \phi_{\mathrm{C}} \end{aligned}$ |  | - | $\mathrm{P}_{\mathrm{A}, \mathrm{B}, \mathrm{C}} / \mathrm{S}_{\mathrm{A}, \mathrm{B}, \mathrm{C}}$ |
| Cos $\Phi$ (three-phase) | $\cos \phi$ |  | - | P/S |
| Frequency (*) | f | - |  |  |

D- -3 (*) It is possible to use the S203T module as frequency meter to measure frequencies between 40 Hz and 70 Hz . To measure RMS voltage, RMS current, active power, reactive power, apparent power, energy, cos $\Phi$, the signal has to have an accurate frequency (about 50 Hz or 60 Hz ).

It is possible to compensate the network frequency: energy and power measures correction for 50 Hz or 60 Hz (if network frequency fluctuation is greater than 30 mHz ).

## Dip-switches table

In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

| BAUD-RATE (Dip-Switches: SW1) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | Meaning |  |  |  |  |
|  |  | Baud-rate=9600 Baud |  |  |  |  |
|  | $\bullet$ | Baud-rate=19200 Baud |  |  |  |  |
| $\bullet$ |  | Baud-rate=38400 Baud |  |  |  |  |
| $\bullet$ | $\bullet$ | Baud-rate=57600 Baud |  |  |  |  |
| ADDRESS (Dip-Switches: SW1) |  |  |  |  |  |  |
| 3 | 4 | 5 | 6 | 7 | 8 | Meaning |
|  |  |  |  |  |  | Address an |
|  |  |  |  |  | - | Address=1 |
|  |  |  |  | $\bullet$ |  | Address=2 |
|  |  |  |  | $\bullet$ | - | Address=3 |
|  |  |  | - |  |  | Address=4 |
| X | X | X | X | X | X | ...... |
| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | Address=63 |



Np=turn number of primary; Ns=turn number of secondary.

## RS485 Register table



| CT Ratio MSW | Word |  | 40026 |
| :---: | :---: | :---: | :---: |
| CT Ratio LSW | Word $\quad$ R/W |  | 40027 |
|  | Current transformer turns-ratio ( $\mathrm{Ns} / \mathrm{Np}$ ) setting. This value affects: RMS current floating-point value, active power floating-point value, reactive power floating-point value, apparent power floating-point value, energy floating-point value (both single-phase and three-phase); this value does not affect normalized values. <br> $\mathrm{Np}=$ turn number of primary <br> Ns=turn number of secondary | $\begin{aligned} & 1000 \\ & (=\mathrm{Ns} / \mathrm{Np}) \end{aligned}$ |  |
| OUT phase | Word $\quad$ R/W |  | 40025 |
|  | Output-electric value (see screw terminals: 34, 35, 36, and Dip-switches SW2-6 and SW2-7) is referred to one of the following phases: <br> $0=$ phase A <br> 1=phase B <br> 2=phase C <br> Any other value of reg.40025=three-phase value | 0 single- phase) |  |
| MinIN MSW | FP32bit_MSW R/W |  | 40028 |
| MinIN LSW | l\|lll |  | 40029 |
|  | Input-electric value corresponding to minimum normalized value and minimum output-electric value. To choose which phase corresponds to normalized value, set reg.40025; to choose which input-electric value corresponds to normalized value, set Dip-Switches SW2-6 and SW2-7 (RMS voltage, RMS current, active power, $\cos \phi$ ). For RMS voltage, MinIN is [V]; for RMS current, MinIN is [mA]; for active power, MinIN is [W]; for $\cos \phi, \operatorname{MinIN}$ is a dimensionless number | 0 |  |
| MaxIN MSW | FP32bit_MSW R/W |  | 40030 |
| MaxIN LSW | l\|l|l |  | 40031 |
|  | Input-electric value corresponding to max normalized value and max output-electric value. To choose which phase corresponds to normalized value, set reg.40025; to choose which input-electric value corresponds to normalized value, set Dip-Switches SW2-6 and SW2-7 (RMS voltage, RMS current, active power, $\cos \phi$ ). For RMS voltage, MaxIN is [V]; for RMS current, MaxIN is [mA]; for active power, MaxIN is [W]; for $\cos \phi$, MaxIN is a dimensionless number | 600 |  |
| Normalized Measure | Between:0; 10000 Word ${ }^{\text {P }}$ |  | 40217 |
|  | Normalized measure of input: this value is referred to reg. 40028, 40029 (Floating point) and reg. 40030, 40031 (Floating point). To know which phase corresponds to normalized value, see reg. 40025 ; to know which inputelectric value corresponds to normalized value, see DipSwitches SW2-6 and SW2-7 configuration (RMS voltage, RMS current, active power, $\cos \phi)$. <br> Reg. 40217 is equal to 0, if selected floating point value is less than reg.40028,40029 (FP) <br> Reg. 40217 is equal to 10000 , if selected floating point value is greater than 40030,40031 (FP) <br> Reg. 40217 is directly proportional to input electrical value, for any other value (saturation value: 11000) | / |  |


| VOLTAGE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VoltageA MSW |  | FP32bit_MSW | R |  | 40135 |
| VoltageA LSW |  | FP32bit_LSW | R |  | 40136 |
|  | RMS voltage electrical measure of input [Vrms] for phase A. |  |  | 1 |  |
| VoltageB MSW |  | FP32bit_MSW | R |  | 40137 |
| VoltageB LSW |  | FP32bit_LSW | R |  | 40138 |
|  | RMS voltage electrical measure of input [Vrms] for phase B. |  |  | 1 |  |
| VoltageC MSW |  | FP32bit_MSW | R |  | 40139 |
| VoltageC LSW |  | FP32bit_LSW | R |  | 40140 |
|  | RMS voltage electrical measure of input [Vrms] for phase C. |  |  | 1 |  |
| Voltage3PH MSW |  | FP32bit_MSW | R |  | 40141 |
| $\begin{aligned} & \text { Voltage3PH } \\ & \text { LSW } \end{aligned}$ |  | FP32bit_LSW | R |  | 40142 |
|  | RMS voltage electrical measure of input [Vrms] for threephase $\left(V_{A}+V_{B}+V_{C}\right) / 3$. |  |  | 1 |  |
| VoltageA | Between: 0; 10000 | Word | R |  | 40193 |
|  | RMS voltage normalized value for phase $A$. This value is regardless of reg.40026, 40027 |  |  | 1 |  |
| VoltageB | Between: 0; 10000 | Word | R |  | 40194 |
|  | RMS voltage normalized value for phase B. This value is regardless of reg.40026, 40027 |  |  | 1 |  |
| VoltageC | Between: 0; 10000 | Word | R |  | 40195 |
|  | RMS voltage normalized value for phase C. This value is regardless of reg.40026, 40027 |  |  | 1 |  |
| Voltage3PH | Between: 0; 10000 | Word | R |  | 40196 |
|  | RMS voltage normalized value for three-phase. This value is regardless of reg.40026, 40027 |  |  | 1 |  |
|  | CURRENT |  |  |  |  |
| CurrentA MSW |  | FP32bit_MSW | R |  | 40143 |
| CurrentA LSW |  | FP32bit_LSW | R |  | 40144 |
|  | RMS current electrical measure of input [mArms] for phase A. This value depends on reg. 40026,40027 |  |  | 1 |  |
| CurrentB MSW |  | FP32bit_MSW | R |  | 40145 |
| CurrentB LSW |  | FP32bit_LSW | R |  | 40146 |
|  | RMS current electrical measure of input [mArms] for phase <br> B. This value depends on reg. 40026,40027 |  |  | 1 |  |
| CurrentC MSW |  | FP32bit_MSW | R |  | 40147 |
| CurrentC LSW |  | FP32bit_LSW | R |  | 40148 |
|  | RMS current electric C. This value depe | of input [mArms] 40026, 40027 | phase | 1 |  |


| $\begin{aligned} & \hline \hline \text { Current3PH } \\ & \text { MSW } \end{aligned}$ |  | FP32bit_MSW | R |  | 40149 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Current3PH } \\ & \text { LSW } \end{aligned}$ |  | FP32bit_LSW | R |  | 40150 |
|  | RMS current electrical measure of input [mArms] for threephase $\left(I_{A}+I_{B}+I_{C}\right) / 3$. This value depends on reg.40026, 40027 |  |  | 1 |  |
| CurrentA | Between: 0; 10000 | Word | R |  | 40197 |
|  | RMS current normalized value for phase A. This value is regardless of reg.40026, 40027 |  |  | / |  |
| CurrentB | Between: 0; 10000 | Word | R |  | 40198 |
|  | RMS current normalized value for phase B. This value is regardless of reg.40026, 40027 |  |  | / |  |
| CurrentC | Between: 0; 10000 | Word | R |  | 40199 |
|  | RMS current normalized value for phase $C$. This value is regardless of reg.40026, 40027 |  |  | / |  |
| Current3PH | Between: 0; 10000 | Word | R |  | 40200 |
|  | RMS current normalized value for three-phase. This value is regardless of reg.40026, 40027 |  |  | / |  |
|  | ACTIVE POWER |  |  |  |  |
| ActivePowA MSW |  | FP32bit_MSW | R |  | 40151 |
| ActivePowA LSW |  | FP32bit_LSW | R |  | 40152 |
|  | Active power electrical measure of input [W] for phase A. This value depends on reg.40026, 40027 |  |  | / |  |
| ActivePowB MSW |  | FP32bit_MSW | R |  | 40153 |
| ActivePowB LSW |  | FP32bit_LSW | R |  | 40154 |
|  | Active power electrical measure of input [W] for phase B. This value depends on reg.40026, 40027 |  |  | / |  |
| ActivePowC MSW |  | FP32bit_MSW | R |  | 40155 |
| ActivePowC LSW |  | FP32bit_LSW | R |  | 40156 |
|  | Active power electrical measure of input [W] for phase C. This value depends on reg.40026, 40027 |  |  | / |  |
| $\begin{aligned} & \text { ActivePow3PH } \\ & \text { MSW } \end{aligned}$ |  | FP32bit_MSW | R |  | 40157 |
| ActivePow3PH LSW |  | FP32bit_LSW | R |  | 40158 |
|  | Active power electrical measure of input [W] for threephase $\left(P_{A}+P_{B}+P_{C}\right) / 3$. This value depends on reg.40026, 40027 |  |  | / |  |
| ActivePowA | Between: 0; 10000 | Word | R |  | 40201 |
|  | Active power normalized value for phase A. This value is regardless of reg.40026, 40027 |  |  | / |  |
| ActivePowB | Between: 0; 10000 | Word | R |  | 40202 |
|  | Active power normalized value for phase $B$. This value is regardless of reg.40026, 40027 |  |  | / |  |
| ActivePowC | Between: 0; 10000 | Word | R |  | 40203 |
|  | Active power normalized value for phase $C$. This value is regardless of reg.40026, 40027 |  |  | / |  |
| ActivePow3PH | Between: 0; 10000 | Word | R |  | 40204 |
|  | Active power normalized value for three-phase. This value is regardless of reg.40026, 40027 |  |  | / |  |



| $\begin{aligned} & \hline \hline \text { ApparentPow3 } \\ & \text { PH MSW } \end{aligned}$ |  | FP32bit_MSW | R |  | 40173 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { ApparentPow3 } \\ & \text { PH LSW } \end{aligned}$ |  | FP32bit_LSW | R |  | 40174 |
|  | Apparent power electrical measure of input [VA] for threephase $\left(\mathrm{S}_{\mathrm{A}}+\mathrm{S}_{\mathrm{B}}+\mathrm{S}_{\mathrm{C}}\right) / 3$. This value depends on reg.40026, 40027 |  |  | 1 |  |
| ApparentPowA | Between: 0; 10000 | Word | R |  | 40209 |
|  | Apparent power normalized value for phase A. This value is regardless of reg.40026, 40027 |  |  | / |  |
| ApparentPowB | Between: 0; 10000 | Word | R |  | 40210 |
|  | Apparent power normalized value for phase B. This value is regardless of reg.40026, 40027 |  |  | / |  |
| ApparentPow C | Between: 0; 10000 | Word | R |  | 40211 |
|  | Apparent power normalized value for phase C. This value is regardless of reg.40026, 40027 |  |  | / |  |
| ApparentPow3 $\mathrm{PH}$ | Between: 0; 10000 | Word | R |  | 40212 |
|  | Apparent power normalized value for three-phase. This value is regardless of reg. 40026,40027 |  |  | / |  |
|  | ENERGY |  |  |  |  |
| EnergyA MSW |  |  |  |  | 40185 |
| EnergyA LSW |  | FP32bit_LSW | R |  | 40186 |
|  | Energy electrical measure of input [Wh] for phase A. |  |  | / |  |
| EnergyB MSW |  | FP32bit_MSW | R |  | 40187 |
| EnergyB LSW |  | FP32bit_LSW | R |  | 40188 |
|  | Energy electrical measure of input [Wh] for phase B. |  |  | / |  |
| EnergyC MSW |  | FP32bit_MSW | R |  | 40189 |
| EnergyC LSW |  | FP32bit_LSW | R |  | 40190 |
|  | Energy electrical measure of input [Wh] for phase C. |  |  | 1 |  |
| $\begin{aligned} & \text { Energy3PH } \\ & \text { MSW } \end{aligned}$ |  | FP32bit_MSW | R |  | 40191 |
| $\begin{aligned} & \hline \text { Energy3PH } \\ & \text { LSW } \end{aligned}$ |  | FP32bit_LSW | R |  | 40192 |
|  | Energy electrical measure of input [Wh] for three-phase $\left(E_{A}+E_{B}+E_{C}\right) / 3$. |  |  | 1 |  |


| CosфA MSW | FP32bit_MSW |  | 40175 |
| :---: | :---: | :---: | :---: |
| Cos $\phi$ A LSW | FP32bit_LSW R |  | 40176 |
|  | Cos $\phi$ electrical measure of input [dimensionless number] for phase A | 1 |  |
| CosфB MSW | FP32bit_MSW |  | 40177 |
| CosфB LSW | FP32bit_LSW |  | 40178 |
|  | Cos $\phi$ electrical measure of input [dimensionless number] for phase B | 1 |  |
| CosфC MSW | FP32bit_MSW |  | 40179 |
| CosфC LSW | FP32bit_LSW R |  | 40180 |
|  | Cos $\phi$ electrical measure of input [VA] for phase C | 1 |  |
| $\begin{aligned} & \hline \text { Cos } \phi 3 \text { PH } \\ & \text { MSW } \end{aligned}$ | FP32bit_MSW |  | 40181 |
| Cosф3PH LSW | FP32bit_LSW R |  | 40182 |
|  | Cosh electrical measure of input [VA] for three-phase ( P/S) | 1 |  |


| $\operatorname{Cos} \phi \mathrm{A}$ | Between: -10000; 10000 | Word | R |  | 40213 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\operatorname{Cos} \phi$ normalized value for phase A. |  |  | 1 |  |
| $\operatorname{Cos} \phi$ B | Between: -10000; 10000 | Word | R |  | 40214 |
|  | Cos $\phi$ normalized value for phase B. |  |  | 1 |  |
| CospC | Between: -10000; 10000 | Word | R |  | 40215 |
|  | Cos $\phi$ normalized value for phase C. |  |  | 1 |  |
| Cos¢3PH | Between: -10000; 10000 | Word | R |  | 40216 |
|  | Cos $\phi$ normalized value for three-phase. |  |  | 1 |  |
|  | FREQUENCY |  |  |  |  |
| Freq MSW |  | FP32bit_MSW | R |  | 40183 |
| Freq LSW |  | FP32bit_LSW | R |  | 40184 |
|  | Electrical-line frequency measure [Hz] |  |  | 1 |  |

## LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The module power is on |
| ERR | Blinking light | Measure of voltage: <40Vac (at least one of the phase used) |
|  | Constant light | The module has at least one of the errors described in RS485 <br> Registers table |
|  | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
| TX | Blinking light | The module sent a data packet |

## Seneca Z-PC Line module: S203TA

The S203TA module is a three-phase network analyzer for electric-line voltage up to 600Vac and electric-line current up to the current transformer rated current ( 50 Hz or 60 Hz ). The module has an analog output, electrical value directly proportional to selected input: voltagetype output or current-type output. The electrical value (analog output) is available on screw terminals and the normalized value is available on RS485 registers.

## General characteristics

$>$ It is possible to detect, with reference to the electric-line and load connected to its: RMS voltage, RMS current, active power, reactive power, apparent power, $\cos \Phi$, frequency, energy (for each measure: phase A, phase B, phase C and three-phase values are available, except frequency)
> Normalized start/end scale between $0 . .+10000$ (for RMS voltage, RMS current, active power, apparent power) or between $\pm 10000$ (for reactive power, $\cos \Phi$ )
$>$ It is possible to reset the energy values
$>$ It is possible to manage connections for high power devices using current transformers (with secondary current=5Arms)
$>$ It is possible to connect the module using single-phase insertion, ARON insertion (three-phase without neutral), 4-wires insertion (three-phase with neutral), single-phase without CT insertion
$>$ It is possible to configure the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to configure electrical-line frequency, output (electrical value), single/three phase application, rescaled-input type, insertion-type and maximum current by Dip-Switches

## Features

| INPUT |  |
| :---: | :---: |
| Number | 3 (Phase A, phase B, phase C) + Neutral |
| Accuracy | $0.2 \%$ of E.E.S. (Voltmeter, amperemeter, watt-meter) + accuracy of the current transformer |
|  | Thermal stability: < $100 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$ |
|  | EMI: < 1\% |
| Protection | This module provides inputs protection against the ESD (up to 4 kV ) |
| Voltage-type IN | E.S.S./E.E.S.(Electrical Start/End Scale) between: 0..600Vac. Input impedance: $800 \mathrm{k} \Omega$ |
| Current-type IN | E.S.S./E.E.S.(Electrical Start/End Scale) between: 0...current transformer primary current; max peak factor: 3. Input impedance: $1 \Omega$ |
| OUTPUT |  |
| Number | 1 |
| Type | Voltage, active current, passive current |
| Accuracy | 0.1\% of output scale range |
| Cables at secondary circuit | The power consumption through two cables (they are necessary to connect CT secondary to S203TA) must to be less than rated power of current transformer |
| Response time (10\%..90\%) | 0.4s |
| Voltage-type OUT | Output scale range configurable between: $0-10 \mathrm{~V}$ or $0-5 \mathrm{~V}$ (minimum resistance that can be connected: $2 \mathrm{k} \Omega$ ). Saturation value is 11 V |


| Current-type OUT | Output scale range configurable between: $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ <br> (max resistance that can be connected: $500 \Omega$ ). Saturation value is <br> 22 mA |
| :--- | :--- |
| CONNECTIONS | Screw terminals 31 (B), 32 (A), 33 (GND) |
| RS485 interface | 1500 Vac isolation between: power supply, ModBUS RS485 <br> + output <br> 3750Vac isolation between: input (electric network) and other parts |
| ISOLATIONS |  |



POWER SUPPLY
Supply voltage
$10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$
Power
Max: 2.5 W
consumption

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.
"Accuracy" terms are guaranteed with reference to the following ranges: RMS voltage $=40 \ldots 600 \mathrm{Vac}$, RMS current $=(0.4 \ldots 100) \%$ of $\mathrm{I}_{\text {NOM }}$ (current-transformer primary-current).

| MODULE CASE |  |
| :--- | :--- |
| Case-type | DIN 43880, UL94VO plastic material, gray |
| Dimensions | $105 \times 89 \times 60 \mathrm{~mm}$ |
| Terminal board | Not removable 3-way screw terminals: pitch 5.08 mm , sections |
|  | $2.5 \mathrm{~mm}^{2}$ |
| Protection class | IP20 |



| Screw terminals | Measurement scala range |
| :--- | :--- |
| 13,14 | Connect CT secondary for phase A |
| 15,16 | Connect CT secondary for phase B |
| 17,18 | Connect CT secondary for phase C |
| $19,20,21,22$ | See input connection figure |
| 25,26 | Power supply (10..40Vdc or 19...28Vac; 2.5 W$)$ |
| 27 | LED PWR |
| 28 | LED ERR |
| 29 | LED Tx |
| 30 | LED Rx |
| 31 | RS485 B |
| 32 | RS485 A |
| 33 | RS485 GND |
| $34,35,36$ | See output connection figure |

## Connections

## Input connection

In the following figure are shown typical current transformer, to connect S203TA module with electrical-line.

## CURRENT TRANSFORMER



$10-8$Np=turn number of primary; Ns=turn number of secondary.

ITO
Accuracy class equal to 0.2 is the accuracy class related to the S203TA module only: it is regardless of the accuracy class for current transformer CT, because CT is chosen by user (this is not true for S203T module).

In the following figure are shown input connections for four insertion types: single-phase, singlephase without current transformer, ARON (three-phase with two CT) and 4-wires (three-phase with three CT).

A

## WARNING

ONLY the connections shown in the following figure for S203TA module are allowed!
If a negative power is measured, check current transformer insertion!


NOTE
It is forbidden to connect the current transformer secondary to ground.

Monophase


ARON (Threephase without neutral)


4 WIRES (Threephase with neutral)


Monophase without current transformer


ATTENTION
In "single-phase without current transformer"-insertion figure, screw terminals are shown in a different position!
$14,16,18,22$ screw terminals are connected internally.

## Output connection

## Active module



Passive module

| $\begin{array}{l}\text { The sensor supplies } \\ \text { the current loop }\end{array}$ |
| :--- |
| $36: \odot$ |
| 34 |

Shielded cables are recommended to connect the outputs.

D- -3 It is not possible to obtain an output (electric value) directly proportional to the electricline frequency, energy, reactive power, apparent power (see Dip-switches SW2-6 and SW2-7).

This module allows to associate a electric quantity (RMS voltage, RMS current, active power, $\cos \phi$, through Dip-switches) to the analog output value (and normalized measure), as described in the following points:

- if selected electric quantity (single-phase/three-phase, RMS voltage/RMS current/active power/cos $\phi$ ) is less than MinIN (reg.40028, 40029 floating point): normalized measure (reg.40217) is equal to 0 and analog output is $0 \%(0 \mathrm{~V}, 0 \mathrm{~mA}, 4 \mathrm{~mA})$, available through screw terminals;
- if selected electric quantity (single-phase/three-phase, RMS voltage/RMS current/active power/cos $\phi$ ) is greater than MaxIN (reg.40030, 40031 floating point): normalized measure (reg. 40217) is equal to 10000 and analog output is $100 \%(5 \mathrm{~V}, 10 \mathrm{~V}, 20 \mathrm{~mA}$ ), available through screw terminals;
- if selected electric quantity (single-phase/three-phase, RMS voltage/RMS current/active power/cos $\phi$ ) is between $\operatorname{MinIN}$ and MaxIN, analog output (current/voltage) is directly proportional to the selected electric quantity and it is available through screw terminals.

D -3 To choose if electric quantity is single-phase (it is possible to choose which phase: A, B or C) or three-phase, set reg. 40025.

RS485 serial port and power supply

POWER SUPPLY


25 $\varnothing$ $19 \div 28$ VAC 2.5 W
RS485
SERIAL PORT

| 33 | $\varnothing$ | GND |
| :--- | :--- | :--- |
| 32 | $\varnothing$ | A |
| 31 | $\varnothing$ | B |

## Functioning

The S203TA module allows to detect and capture the following electric quantity: RMS voltage, RMS current, active power, reactive power, apparent power, frequency, cos $\phi$, energy. For each quantity, it is possible to read phase A, phase B, phase C and three-phase value (except for frequency).

The measure ranges for RMS voltage, RMS current, active power, reactive power, apparent power, energy, $\cos \Phi$, frequency are shown in the following table.

| Possible measures (electric quantities) | Measurement scale range |
| :---: | :---: |
| RMS voltage | $0 \ldots 60 \mathrm{Vac}$ |
| RMS current | $0 \ldots I_{\text {NoM }}(\ldots$ (curent transformer) |
| Active power | $\left.0 \ldots . .600 \cdot I_{\text {NOM }}\right) \mathrm{W}$ |
| Reactive power | $0 \ldots\left(600 \cdot I_{\text {NOO }}\right)$ VAR |
| Apparent power | $0 \ldots\left(60 \cdot I_{\text {NOM }}\right)$ VA |
| Energy | 1 |
| Cos $\Phi$ | $0 \ldots 1$ |
| Frequency | $40 \ldots 70 \mathrm{~Hz}$ |

The S203TA module allows to read floating point measures (for every quantity) and normalized values (except for energy and frequency); in particular, energy values are kept stored if module is power off.

D- $\Rightarrow$ RMS voltage, RMS current, active power, frequency, energy are measured by S203TA directly (for each phase A, B, C); reactive power, apparent power, $\cos \Phi$ and all three-phase values are obtained through processing by S203TA.

| Possible measures | Symbol | Measured value | Calculated value | Value |
| :---: | :---: | :---: | :---: | :---: |
| RMS voltage for phase A,B,C | $\mathrm{V}_{\mathrm{A}} \mathrm{V}_{\mathrm{B}} \mathrm{V}_{\mathrm{C}}$ | - |  | 1 |
| Average phase) RMS voltage (three- | V |  | $\bullet$ | $\left(\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}+\mathrm{V}_{\mathrm{C}}\right) / 3$ |
| RMS current for phase A,B,C | $I_{A} I_{B} I_{C}$ | $\bullet$ |  | 1 |
| Average RMS current (three-phase) | , |  | $\bullet$ | $\left(I_{A}+I_{B}+I_{C}\right) / 3$ |
| Active power for phase A,B,C | $\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}}$ | - |  | 1 |
| Active power (three-phase) | P |  | $\bullet$ | $\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}$ |
| Reactive power for phase A,B,C | $\mathrm{Q}_{\mathrm{A}} \mathrm{Q}_{\mathrm{B}} \mathrm{Q}_{\mathrm{C}}$ |  | $\bullet$ | $\sqrt{S_{A, B, C}^{2}-P_{A, B, C}^{2}}$ |
| Reactive power (three-phase) | Q |  | $\bullet$ | $\mathrm{Q}_{\mathrm{A}}+\mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{C}}$ |
| Apparent power for phase A,B,C | $\mathrm{S}_{\mathrm{A}} \mathrm{S}_{\mathrm{B}} \mathrm{S}_{\mathrm{C}}$ |  | $\bullet$ | $\mathrm{V}_{\mathrm{A}, \mathrm{B}, \mathrm{C}} \cdot \mathrm{I}_{\mathrm{A}, \mathrm{B}, \mathrm{C}}$ |
| Apparent power (three-phase) | S |  | $\bullet$ | $\mathrm{S}_{\mathrm{A}}+\mathrm{S}_{\mathrm{B}}+\mathrm{S}_{\mathrm{C}}$ |
| Energy for phase A,B,C | $\mathrm{E}_{\mathrm{A}} \mathrm{E}_{\mathrm{B}} \mathrm{E}_{\mathrm{C}}$ | - |  | 1 |
| Energy (three-phase) | E |  | - | $\mathrm{E}_{\mathrm{A}}+\mathrm{E}_{\mathrm{B}}+\mathrm{E}_{\mathrm{C}}$ |
| Cos $\Phi$ for phase A,B,C | $\begin{array}{ll} \hline \cos \phi_{\mathrm{A}} & \cos \phi_{\mathrm{B}} \\ \cos \phi_{\mathrm{C}} \\ \hline \end{array}$ |  | - | $\mathrm{P}_{\mathrm{A}, \mathrm{B}, \mathrm{C}} / \mathrm{S}_{\mathrm{A}, \mathrm{B}, \mathrm{C}}$ |
| Cos $\Phi$ (three-phase) | $\cos \phi$ |  | $\bullet$ | P/S |
| Frequency (*) | f | - |  | 1 |

${ }^{(*)}$ It is possible to use the S203TA module as frequency meter to measure frequencies between 40 Hz and 70 Hz . To measure RMS voltage, RMS current, active power, reactive power, apparent power, energy, $\cos \Phi$, the signal has to have an accurate frequency (about 50 Hz or 60 Hz ).

It is possible to compensate the electrical-line frequency: energy and power measures correction for 50 Hz or 60 Hz (if network frequency fluctuation is greater than 30 mHz ).

## Dip-switches table

D- 2 In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

| BAUD-RATE (Dip-Switches: SW1) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | Meaning |  |  |  |  |
|  |  | Baud-rate=9600 Baud |  |  |  |  |
|  | $\bullet$ | Baud-rate=19200 Baud |  |  |  |  |
| $\bullet$ |  | Baud-rate=38400 Baud |  |  |  |  |
| $\bullet$ | $\bullet$ | Baud-rate=57600 Baud |  |  |  |  |
| ADDRESS (Dip-Switches: SW1) |  |  |  |  |  |  |
| 3 | 4 | 5 | 6 | 7 | 8 | Meaning |
|  |  |  |  |  |  | Address and |
|  |  |  |  |  | - | Address=1 |
|  |  |  |  | $\bullet$ |  | Address=2 |
|  |  |  |  | $\bullet$ | - | Address=3 |
|  |  |  | $\bullet$ |  |  | Address=4 |
| X | X | X | X | X | X | ................. |
| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | Address=63 |


| FREQUENCY (Dip-Switches: SW2) |  |  |
| :---: | :---: | :---: |
| 1 | Meaning |  |
|  | Electric network frequency $=50 \mathrm{~Hz}$ |  |
| $\bullet$ | Electric network frequency $=60 \mathrm{~Hz}$ |  |
| OUTPUT - ELECTRIC VALUE (Dip-Switches: SW2) |  |  |
| 2 | 3 | Meaning |
|  |  | Output=0..10V |
|  | - | Output=0..5V |
| $\bullet$ |  | Output=0..20mA |
| $\bullet$ | - | Output=4..20mA |
| APPLICATION TYPE (Dip-Switches: SW2) |  |  |
| 4 | Meaning |  |
| Three-phase |  |  |
| - Single-phase |  |  |
| INSERTION TYPE (Dip-Switches: SW2) |  |  |
| 5 | Meaning |  |
| 4-wires (it is activated if SW2-4 is "Three-phase") |  |  |
| $\bullet$ | Aron (it is activated if SW2-4 is "Three-phase") |  |


| INPUT - ELECTRIC VALUE SENT TO OUTPUT - ELECTRIC VALUE (Dip-Switches: SW2) |  |  |
| :--- | :--- | :--- |
| 6 | 7 | Meaning |
|  |  | RMS voltage |
|  | $\bullet$ | RMS current |
| $\bullet$ |  | Active power |
| $\bullet$ | $\bullet$ | Cos $\phi$ |
| MAX CURRENT MEASURABLE USING CT TURNS RATIO Np/Ns EQUAL TO 1:1000 (Dip-Switches: |  |  |
| SW2) |  |  |
| 8 | Meaning |  |
|  | 100A |  |
| $\bullet$ | $25 A$ |  |

$\mathrm{Np}=$ turn number of primary; $\mathrm{Ns}=$ turn number of secondary.

## RS485 register table



|  | Delay for RS485 (delay of communication response: it represents the number of the pauses(*) between the end of Rx message and the start of Tx message): from $0 \times 00=0$ to $0 x F F=255$ (*) 1 pause $=6$ characters |  |  | 0 | Bit [7:0] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Address Parity | 1 | MSB, LSB | R/W |  | 40025 |
|  | Address for RS485 (address of module/node if parameters are configurated by memory modality): from $0 \times 01=1$ to $0 x F F=255$ |  |  | 1 | Bit [15:8] |
|  | Parity for RS485: 0=there isn't; 1=even parity; 2=odd parity |  |  | 0 | Bit [7:0] |
| CT Type |  | Word | R/W |  | 40016 |
|  | These bits aren't used |  |  | 1 | Bit [15:1] |
|  | Current Transformer-type setting: $0=$ passive CT, with output=5Arms (as the equipment supplied current transformer); 1=compensated CT (phase error is zero). Only for equipment supplied current transformer (passive CT ) the precision class is guaranteed |  |  | 0 | Bit 0 |
| Nominal Current MSW |  | Word | R/W |  | 40018 |
| Nominal Current LSW |  | Word | R/W |  | 40019 |
|  | Current transformer nominal current (primary current) setting. This value affects: RMS current floating point value, active power floating point value, reactive power floating point value, apparent power floating point value, energy floating point value (both single-phase and threephase); this value does not affect normalized values. <br> $\mathrm{Np}=$ turn number of primary <br> Ns=turn number of secondary |  |  | $\begin{aligned} & \hline 1000 \\ & {[\text { Arms }]} \end{aligned}$ |  |
| OUT phase |  | Word | R/W |  | 40017 |
|  | Output-electric value (see screw terminals: 34, 35, 36, and Dip-switches SW2-6 and SW2-7) is referred to one of the following phases: <br> $0=$ phase A <br> 1=phase B <br> 2=phase C <br> Any other value of reg.40017=three-phase value |  |  | 0single- <br> phase) |  |
| MinIN MSW |  | FP32bit_MSW | R/W |  | 40020 |
| MinIN LSW |  | FP32bit_LSW | R/W |  | 40021 |
|  | Input-electric value corresponding to minimum normalized value and minimum output-electric value. To choose which phase corresponds to normalized value, set reg.40017; to choose which input-electric value corresponds to normalized value, set Dip-Switches SW2-6 and SW2-7 (RMS voltage, RMS current, active power, $\cos \phi$ ). For RMS voltage, MinIN is [V]; for RMS current, MinIN is [mA]; for active power, MinIN is [W]; for $\cos \phi$, MinIN is a dimensionless number |  |  | 0 |  |
| MaxIN MSW |  | FP32bit_MSW | R/W |  | 40022 |
| MaxIN LSW |  | FP32bit_LSW | R/W |  | 40023 |
|  | Input-electric value corresponding to max normalized value and max output-electric value. To choose which phase corresponds to normalized value, set reg.40017; to choose which input-electric value corresponds to normalized value, set Dip-Switches SW2-6 and SW2-7 (RMS voltage, RMS current, active power, $\cos \phi$ ). For RMS voltage, MaxIN is [V]; for RMS current, MaxIN is [mA]; for active power, MaxIN is [W]; for $\cos \phi$, MaxIN is a dimensionless number |  |  | 600 |  |


| Normalized Measure | Between:0; 10000 | Word | R |  | 40217 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Normalized measure of input: this value is referred to reg. 40020,40021 FP) and reg. 40022,40023 (FP). To know which phase corresponds to normalized value, see reg. 40017; to know which input-electric value corresponds to normalized value, see Dip-Switches SW2-6 and SW2-7 configuration (RMS voltage, RMS current, active power, $\cos \phi)$. <br> Reg. 40217 is equal to 0 , if selected floating point value is less than reg.40020,40021 (FP) <br> Reg. 40217 is equal to 10000 , if selected floating point value is greater than 40022,40023 (FP) <br> Reg. 40217 is directly proportional to input electrical value, for any other value (saturation value: 11000) |  |  | 1 |  |
| VOLTAGE |  |  |  |  |  |
| VoltageA MSW |  | FP32bit_MSW | R |  | 40135 |
| VoltageA LSW |  | FP32bit LSW | R |  | 40136 |
|  | RMS voltage electrical measure of input [Vrms] for phase A. |  |  | / |  |
| VoltageB MSW |  | FP32bit_MSW | R |  | 40137 |
| VoltageB LSW |  | FP32bit_LSW | R |  | 40138 |
|  | RMS voltage electrical measure of input [Vrms] for phase B. |  |  | / |  |
| VoltageC MSW |  | FP32bit_MSW | R |  | 40139 |
| VoltageC LSW |  | FP32bit_LSW | R |  | 40140 |
|  | RMS voltage electrical measure of input [Vrms] for phase C. |  |  | / |  |
| Voltage3PH MSW |  | FP32bit_MSW | R |  | 40141 |
| Voltage3PH LSW |  | FP32bit_LSW | R |  | 40142 |
|  | RMS voltage electrical measure of input [Vrms] for threephase $\left(\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}+\mathrm{V}_{\mathrm{C}}\right) / 3$. |  |  | / |  |
| VoltageA | Between: 0; 10000 | Word | R |  | 40193 |
|  | RMS voltage normalized value for phase $A$. This value is regardless of reg.40018, 40019 |  |  | / |  |
| VoltageB | Between: 0; 10000 | Word | R |  | 40194 |
|  | RMS voltage normalized value for phase $B$. This value is regardless of reg.40018, 40019 |  |  | / |  |
| VoltageC | Between: 0; 10000 | Word | R |  | 40195 |
|  | RMS voltage normalized value for phase $C$. This value is regardless of reg.40018, 40019 |  |  | / |  |
| Voltage3PH | Between: 0; 10000 | Word | R |  | 40196 |
|  | RMS voltage normalized value for three-phase. This value is regardless of reg.40018, 40019 |  |  | / |  |
|  | CURRENT |  |  |  |  |
| CurrentA MSW |  | FP32bit_MSW | R |  | 40143 |
| CurrentA LSW |  | FP32bit_LSW | R |  | 40144 |
|  | RMS current electrical measure of input [mArms] for phase A. This value depends on reg.40018, 40019 |  |  | 1 |  |
| CurrentB MSW |  | FP32bit_MSW | R |  | 40145 |
| CurrentB LSW |  | FP32bit_LSW | R |  | 40146 |
|  | RMS current electrical measure of input [mArms] for phase B. This value depends on reg. 40018,40019 |  |  | / |  |


| CurrentC MSW |  | FP32bit_MSW | R |  | 40147 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CurrentC LSW |  | FP32bit_LSW | R |  | 40148 |
|  | RMS current electrical measure of input [mArms] for phase C. This value depends on reg. 40018,40019 |  |  | / |  |
| $\begin{aligned} & \hline \text { Current3PH } \\ & \text { MSW } \\ & \hline \end{aligned}$ |  | FP32bit_MSW | R |  | 40149 |
| $\begin{aligned} & \text { Current3PH } \\ & \text { LSW } \end{aligned}$ |  | FP32bit_LSW | R |  | 40150 |
|  | RMS current electrical measure of input [mArms] for threephase $\left(I_{A}+I_{B}+I_{C}\right) / 3$. This value depends on reg.40018, 40019 |  |  | / |  |
| CurrentA | Between: 0; 10000 | Word | R |  | 40197 |
|  | RMS current normalized value for phase A. This value is regardless of reg.40018, 40019 |  |  | / |  |
| CurrentB | Between: 0; 10000 | Word | R |  | 40198 |
|  | RMS current normalized value for phase $B$. This value is regardless of reg.40018, 40019 |  |  | / |  |
| CurrentC | Between: 0; 10000 | Word | R |  | 40199 |
|  | RMS current normalized value for phase $C$. This value is regardless of reg.40018, 40019 |  |  | / |  |
| Current3PH | Between: 0; 10000 | Word | R |  | 40200 |
|  | RMS current normalized value for three-phase. This value is regardless of reg. 40018,40019 |  |  | / |  |
|  | ACTIVE POWER |  |  |  |  |
| ActivePowA MSW |  | FP32bit_MSW | R |  | 40151 |
| ActivePowA LSW |  | FP32bit_LSW | R |  | 40152 |
|  | Active power electrical measure of input [W] for phase A. This value depends on reg.40018, 40019 |  |  | 1 |  |
| ActivePowB MSW |  | FP32bit_MSW | R |  | 40153 |
| ActivePowB LSW |  | FP32bit_LSW | R |  | 40154 |
|  | Active power electrical measure of input [W] for phase B. This value depends on reg.40018, 40019 |  |  | 1 |  |
| ActivePowC MSW |  | FP32bit_MSW | R |  | 40155 |
| ActivePowC LSW |  | FP32bit_LSW | R |  | 40156 |
|  | Active power electrical measure of input [W] for phase C. This value depends on reg.40018, 40019 |  |  | / |  |
| ActivePow3PH MSW |  | FP32bit_MSW | R |  | 40157 |
| ActivePow3PH LSW |  | FP32bit_LSW | R |  | 40158 |
|  | Active power electrical measure of input [W] for threephase $\left(P_{A}+P_{B}+P_{C}\right) / 3$. This value depends on reg.40018, 40019 |  |  | / |  |
| ActivePowA | Between: 0; 10000 | Word | R |  | 40201 |
|  | Active power normalized value for phase A. This value is regardless of reg.40018, 40019 |  |  | / |  |
| ActivePowB | Between: 0; 10000 | Word | R |  | 40202 |
|  | Active power normalized value for phase $B$. This value is regardless of reg.40018, 40019 |  |  | / |  |
| ActivePowC | Between: 0; 10000 | Word | R |  | 40203 |
|  | Active power normalized value for phase C. This value is regardless of reg.40018, 40019 |  |  | / |  |


| ActivePow3PH | Between: 0; 10000 | Word | R |  | 40204 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Active power normalized value for three-phase. This value is regardless of reg.40018, 40019 |  |  | / |  |
| REACTIVE POWER |  |  |  |  |  |
| ReactivePowA MSW |  | FP32bit_MSW | R |  | 40159 |
| ReactivePowA LSW |  | FP32bit_LSW | R |  | 40160 |
|  | Reactive power electrical measure of input [VAR] for phase A. This value depends on reg.40018, 40019 |  |  | / |  |
| ReactivePowB MSW |  | FP32bit_MSW | R |  | 40161 |
| ReactivePowB LSW |  | FP32bit_LSW | R |  | 40162 |
|  | Reactive power electrical measure of input [VAR] for phase B. This value depends on reg.40018, 40019 |  |  | / |  |
| ReactivePowC MSW |  | FP32bit_MSW | R |  | 40163 |
| ReactivePowC LSW |  | FP32bit_LSW | R |  | 40164 |
|  | Reactive power electrical measure of input [VAR] for phase C. This value depends on reg. 40018,40019 |  |  | / |  |
| $\begin{aligned} & \text { ReactivePow3 } \\ & \text { PH MSW } \end{aligned}$ |  | FP32bit_MSW | R |  | 40165 |
| $\begin{aligned} & \text { ReactivePow3 } \\ & \text { PH LSW } \end{aligned}$ |  | FP32bit_LSW | R |  | 40166 |
|  | Reactive power electrical measure of input [VAR] for three-phase $\left(Q_{A}+Q_{B}+Q_{C}\right) / 3$. This value depends on reg.40018, 40019 |  |  | / |  |
| ReactivePowA | Between: -10000; 10000 | Word | R |  | 40205 |
|  | Reactive power normalized value for phase A. This value is regardless of reg.40018, 40019 |  |  | / |  |
| ReactivePowB | Between: -10000; 10000 | Word | R |  | 40206 |
|  | Reactive power normalized value for phase B. This value is regardless of reg.40018, 40019 |  |  | / |  |
| ReactivePowC | Between: -10000; 10000 | Word | R |  | 40207 |
|  | Reactive power normalized value for phase C. This value is regardless of reg.40018, 40019 |  |  | / |  |
| ReactivePow3 PH | Between: -10000; 10000 | Word | R |  | 40208 |
|  | Reactive power normalized value for three-phase. This value is regardless of reg. 40018,40019 <br> APPARENT POWER |  |  | / |  |
|  |  |  |  |  |  |
| ApparentPowA MSW |  | FP32bit_MSW | R |  | 40167 |
| ApparentPowA LSW |  | FP32bit_LSW | R |  | 40168 |
|  | Apparent power electrical measure of input [VA] for phase A. This value depends on reg. 40018,40019 |  |  | / |  |
| ApparentPowB MSW |  | FP32bit_MSW | R |  | 40169 |
| ApparentPowB LSW |  | FP32bit_LSW | R |  | 40170 |
|  | Apparent power electrical measure of input [VA] for phase <br> B. This value depends on reg. 40018,40019 |  |  | / |  |


| ApparentPow C MSW |  | FP32bit_MSW | R |  | 40171 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ApparentPow C LSW |  | FP32bit_LSW | R |  | 40172 |
|  | Apparent power electrical measure of input [VA] for phase C. This value depends on reg. 40018,40019 |  |  | / |  |
| ApparentPow3 PH MSW |  | FP32bit_MSW | R |  | 40173 |
| ApparentPow3 PH LSW |  | FP32bit_LSW | R |  | 40174 |
|  | Apparent power electrical measure of input [VA] for threephase $\left(S_{A}+S_{B}+S_{C}\right) / 3$. This value depends on reg.40018, 40019 |  |  | / |  |
| ApparentPowA | Between: 0; 10000 | Word | R |  | 40209 |
|  | Apparent power normalized value for phase A. This value is regardless of reg.40018, 40019 |  |  | / |  |
| ApparentPowB | Between: 0; 10000 | Word | R |  | 40210 |
|  | Apparent power normalized value for phase B. This value is regardless of reg.40018, 40019 |  |  | / |  |
| ApparentPow C | Between: 0; 10000 | Word | R |  | 40211 |
|  | Apparent power normalized value for phase C. This value is regardless of reg.40018, 40019 |  |  | / |  |
| ApparentPow3 PH | Between: 0; 10000 | Word | R |  | 40212 |
|  | Apparent power normalized value for three-phase. This value is regardless of reg. 40018,40019 |  |  | / |  |
|  | ENERGY |  |  |  |  |
| EnergyA MSW |  | FP32bit_MSW | R |  | 40185 |
| EnergyA LSW |  | FP32bit_LSW | R |  | 40186 |
|  | Energy electrical measure of input [Wh] for phase A. This value depends on reg.40018, 40019 |  |  | / |  |
| EnergyB MSW |  | FP32bit_MSW | R |  | 40187 |
| EnergyB LSW |  | FP32bit_LSW | R |  | 40188 |
|  | Energy electrical measure of input [Wh] for phase B. This value depends on reg.40018, 40019 |  |  | / |  |
| EnergyC MSW |  | FP32bit_MSW | R |  | 40189 |
| EnergyC LSW |  | FP32bit_LSW | R |  | 40190 |
|  | Energy electrical measure of input [Wh] for phase C. This value depends on reg.40018, 40019 |  |  | 1 |  |
| $\begin{aligned} & \text { Energy3PH } \\ & \text { MSW } \end{aligned}$ |  | FP32bit_MSW | R |  | 40191 |
| $\begin{aligned} & \text { Energy3PH } \\ & \text { LSW } \end{aligned}$ |  | FP32bit_LSW | R |  | 40192 |
|  | Energy electrical measure of input [Wh] for three-phase $\left(E_{A}+E_{B}+E_{C}\right) / 3$. This value depends on reg.40018, 40019 |  |  | 1 |  |
|  | COS $\phi$ |  |  |  |  |
| CosфA MSW |  | FP32bit_MSW | R |  | 40175 |
| CosфA LSW |  | FP32bit_LSW | R |  | 40176 |
|  | Cos $\phi$ electrical measure of input [dimensionless number] for phase A |  |  | / |  |
| CosфB MSW |  | FP32bit_MSW | R |  | 40177 |
| CosфB LSW |  | FP32bit_LSW | R |  | 40178 |
|  | Cos $\phi$ electrical measure of input [dimensionless number] for phase B |  |  | / |  |
| CosфC MSW |  | FP32bit_MSW | R |  | 40179 |
| CosфC LSW |  | FP32bit_LSW | R |  | 40180 |
|  | Cos $\phi$ electrical measure of input [VA] for phase C |  |  | 1 |  |


| $\text { Cos } \phi 3 \mathrm{PH}$ MSW |  | FP32bit_MSW | R |  | 40181 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cos $¢ 3$ PH LSW |  | FP32bit_LSW | R |  | 40182 |
|  | Cos $\phi$ electrical measure of input [VA] for three-phase ( P/S) |  |  | / |  |
| $\operatorname{Cos} \phi \mathrm{A}$ | Between: -10000; 10000 | Word | R |  | 40213 |
|  | $\operatorname{Cos} \phi$ normalized value for phase A. This value is regardless of reg. 40018,40019 |  |  | / |  |
| CospB | Between: -10000; 10000 | Word | R |  | 40214 |
|  | $\operatorname{Cos} \phi$ normalized value for phase $B$. This value is regardless of reg.40018, 40019 |  |  | / |  |
| CospC | Between: -10000; 10000 | Word | R |  | 40215 |
|  | Cosф normalized value for phase C. This value is regardless of reg.40018, 40019 |  |  | / |  |
| Cos ${ }^{\text {3PH }}$ | Between: -10000; 10000 | Word | R |  | 40216 |
|  | $\operatorname{Cos} \phi$ normalized value for three-phase. This value is regardless of reg.40018, 40019 |  |  | / |  |
|  | FREQUENCY |  |  |  |  |
| Freq MSW |  | FP32bit_MSW | R |  | 40183 |
| Freq LSW |  | FP32bit_LSW | R |  | 40184 |
|  | Network frequency measure [Hz] |  |  | / |  |

## LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The module power is on |
| ERR | Blinking light | Measure of voltage: $<40$ Vac (at least one of the phase used) |
|  | Constant light | The module has at least one of the errors described in RS485 <br> Registers table |
| RX | Constant light | Verify if the bus connection is corrected |
|  | Blinking light | The module received a data packet |
| TX | Blinking light | The module sent a data packet |

## Seneca Z-PC Line module: ZC-24DI (CANOpen)

In this chapter are described the features of ZC-24DI module, based on CANOpen protocol.
NOTE: "0x" means an exadecimal number interpretation.

## CANOpen features

| TECHNICAL DATA |  |  |
| :--- | :--- | :---: |
| Baud rate | $20,50,125,250,500,800,1000 \mathrm{kbps}$ |  |
| Counters nr/type | $8(32 \mathrm{bit})$ from input $1 . .8$ |  |
| Max frequency for counters | 10 kHz |  |
| Typical ON/OFF delay | 1 ms (with filter disabled) |  |
| CANOpen TECHNICAL DATA |  |  |
| NMT | slave |  |
|  | Node guarding, heartbeat |  |
| Node ID | HW switch or software |  |
| Number of PDO | 5 TX |  |
| PDO modes | Event triggered, Sync (cyclic), Sync (acyclic) |  |
| PDO mapping | Variable |  |
| PDO linking | supported |  |
| Number of SDO | 1 server |  |
| Error message | yes |  |
| Supported application | Cia 301 v4.02 |  |
| Layer | Cia 401 v2.01 |  |

CANOpen TPDOs transmission type supported

| Object Value 0x180x Sub 2 | TRANSMISSION TYPE |
| :--- | :--- |
| 0 | Synchronous - acyclic |
| From 1 to 240 | Synchronous - cyclic |
| 255 | Asynchronous |

## CANOpen PDOs mapping

| OBJECTS FOR DEFAULT MAPPING |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PDO NR | COB-ID | $\begin{aligned} & \text { MAPPED } \\ & \text { OBJECTS } \end{aligned}$ | INDEX | SUBINDEX |
|  |  | Digital input [1..8] | 0x6000 | 1 |
| TPDO1 | 000 | Digital input [9..16] | 0x6000 | 2 |
| TPDO1 | Nodeld | Digital input [17..24] Overflow counter [1..8] | $\begin{aligned} & 0 \times 6000 \\ & 0 \times 6000 \end{aligned}$ | $\begin{aligned} & 3 \\ & 4 \\ & \hline \end{aligned}$ |
| TPDO5 | $\begin{gathered} 0 \times 40000280 \\ + \\ \text { Nodeld } \\ \hline \end{gathered}$ | Counter 1 value <br> Counter 2 value | $0 \times 2210$ <br> $0 \times 2210$ | 1 <br> 2 |
| TPDO6 | $\begin{gathered} 0 \times 40000380 \\ + \\ \text { Nodeld } \\ \hline \end{gathered}$ | Counter 3 value <br> Counter 4 value | $0 \times 2210$ <br> $0 \times 2210$ | $3$ $4$ |
| TPDO7 | $\begin{gathered} 0 \times 40000480 \\ + \\ \text { Nodeld } \\ \hline \end{gathered}$ | Counter 5 value <br> Counter 6 value | $\begin{aligned} & 0 \times 2210 \\ & 0 \times 2210 \\ & \hline \end{aligned}$ | 5 6 |
| TPDO8 | $\begin{gathered} 0 \times 40000300 \\ + \\ \text { Nodeld } \end{gathered}$ | Counter 7 value <br> Counter 8 value | $0 \times 2210$ $0 \times 2210$ | 7 8 |

Note that TPDO COB-ID must start with $0 \times 4$.

## CANOpen emergency message

The Emergency message is composed by:
2 bytes of EEC (Emergency error code)
1 bytes of ER (Error register)
4 bytes MEF (Manufacturer error filled objects) (0x1002)

| EMERGENCY MESSAGE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 | BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 | BYTE 5 | BYTE 6 |  |
| EER |  | ER | MEF |  |  |  |  |


| EEC |  |
| :--- | :--- |
| Code | Description |
| $0 \times 0000$ | No error |
| $0 \times 1000$ | Generic error |
| $0 \times 4201$ | CPU temperature over T_HIGH_HIGH |
| $0 \times 4202$ | CPU temperature over T_HIGH |
| $0 \times 4203$ | CPU temperature under T_LOW |
| $0 \times 8110$ | Communication Can Overrun |
| $0 \times 8120$ | Error passive |
| $0 \times 8130$ | Life Guard error |
| $0 \times 8140$ | Recovered from bus off |
| $0 \times F F 20$ | CPU error |


| ER |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 |  |
| Generic | 0 | 0 | temperature | communication | 0 | 0 | Manufacture |  |

Where bit equal to "0" means "no error".

## CANOpen manufacturer specific profile

If dip-switches are in "from memory" mode, the node address is selectable by Object 0x2001.

| NODE ADDRESS (Object 0x2001) |  |
| :---: | :--- |
| Object value | Description |
| $0 . .127$ | Node address |

If dip-switches are in "from memory" mode, the baud rate is selectable by Object 0x2002.

| BAUDRATE (Object 0x2002) |  |
| :---: | :--- |
| Object value | Description |
| 1 | $20 \mathrm{kbit} / \mathrm{s}$ |
| 2 | $50 \mathrm{kbit} / \mathrm{s}$ |
| 3 | $125 \mathrm{kbit} / \mathrm{s}$ |
| 4 | $250 \mathrm{kbit} / \mathrm{s}$ |
| 5 | $500 \mathrm{kbit} / \mathrm{s}$ |
| 6 | $800 \mathrm{kbit} / \mathrm{s}$ |
| 7 | $1 \mathrm{Mbit} / \mathrm{s}$ |

Object 0x2030 can be used to monitor the CPU temperature.

| CPU TEMPERATURE (Object 0x2030) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Actual temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ |
| 2 | Temperature for HOT STOP ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 95.0^{\circ} \mathrm{C}$ |
| 3 | Temperature for HOT ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 90.0^{\circ} \mathrm{C}$ |
| 4 | Temperature for COLD ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right]-25.0^{\circ} \mathrm{C}$ |

The HOT STOP temperature sends in pre-operational the station.
The HOT ERROR and the COLD ERROR temperature sends the Emergency Object.

The Object is Read Only.

Object $0 \times 2051$ is used to send commands to the station module.

| CPU COMMAND (Object 0x2051) |  |
| :---: | :--- |
| Command code | Description |
| $0 \times 5 \mathrm{C} 0 \mathrm{n}$ | Force the preset value (object 0x2211) for counter n |
| $0 \times 5 \mathrm{D} 0 \mathrm{n}$ | Force the reset for counter n |
| $0 \times 5 \mathrm{E} 0 \mathrm{n}$ | Force the overflow reset (object 0x6000 sub 4) |

Object $0 \times 2200$ is used to customize the input filter.

| FILTER PARAMETERS (Object 0x2200) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Samples number for filter (default 40) |
| 2 | Counter threshold for high level (default 20) |
| 3 | Counter threshold for low level (default 20) |

For a high level sample the filter counter is incremented, otherwise for a low level the filter counter is decremented.

When the filter counter is greater or equal to subindex2, the input is stated "high".
When the filter counter is lower or equal to subindex3, the input is stated "low".
Between subindex2 and subindex3, no state is asserted (dead zone).

Note that the filter can be disabled by selecting:

Subindex1=1

Subindex2=0

Subindex3=0

Object $0 \times 2210$ stores the values of the 8 counters in 32bit format.

| DIGITAL COUNTERS (Object 0x2210) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Counter 1 value |
| 2 | Counter 2 value |
| 3 | Counter 3 value |
| 4 | Counter 4 value |
| 5 | Counter 5 value |
| 6 | Counter 6 value |
| 7 | Counter 7 value |
| 8 | Counter 8 value |

## DIP-SWITCH configuration



## CANOpen LED description

| SERVICE (DIAGNOSTIC) LED DESCRIPTION |  |  |
| :---: | :---: | :---: |
| LED | LED status | Meaning |
| RUN | Blinking light | Pre-operational mode |
|  | Single flash | Stop mode |
|  | ON | Operational mode |
| ERROR | Single flash | At least one error counter has reached or exceed the warning level |
|  | Double flash | Guard event |
|  | Triple flash | The SYNC has not received within the configurated communication cycle timeout period |
|  | ON | The CAN controller is bus off |
|  | OFF | No error |
| FAIL | ON Blinking | Data receiving from RS232 |
| POWER | ON | Power supply |
| INPUT LED DESCRIPTION |  |  |
| LED | LED status | Meaning |
| 1-8 | ON | Input [1..8] is high |
|  | OFF | Input [1..8] is low |
| 9-24 | ON | Input [9..24] is high |
|  | OFF | Input [9..24] is low |

## CANOpen digital input management

Object $0 \times 6003$ is used for input filter configuration.

| FILTER CONSTANT INPUT (Object 0x6003) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Filter enabled for input [1..8] |
| 2 | Filter enabled for input [9..16] read only |
| 3 | Filter enabled for input [17..24] read only |

If the value of object $0 \times 6003$ subindex 1 is " 0 " all inputs from 1 to 8 are configured in counter mode, in other word counter mode switched ON.

If the value of object $0 x 6003$ subindex 1 is not equal to " 0 " the counter mode is switched OFF.

Object 0x6005 is used for Interrupt Enable:
If the value is " 1 " the station can generate a synchronous TxPDO (DEFAULT setting).
If the value is " 0 " the station can't generate a synchronous TxPDO.

Object $0 \times 6007$ is used as Digital Interrupt Mask Low to High.

| INTERRUPT MASK LOW TO HIGH (Object 0x6007) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Interrupt mask on rising edge input [1..8] |
| 2 | Interrupt mask on rising edge input [9.16] |
| 3 | Interrupt mask on rising edge input [17..24] |
| 4 | Interrupt mask for counters |

For subindex from 1 to 3 if value is " 1 ", the generation of TxPDO on rising edge is enabled.
If subindex 4 value is " 1 ", the generation of TxPDO on all 8 counters overflows is enabled.

Object 0x6008 is used as Digital Interrupt Mask High to Low.

| INTERRUPT MASK HIGH TO LOW (Object 0x6008) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Interrupt mask on falling edge input [1..8] |
| 2 | Interrupt mask on falling edge input [9..16] |
| 3 | Interrupt mask on falling edge input [17..24] |

For subindex from 1 to 3 , if value is " 1 " the generation of TxPDO on falling edge is enable.

## CANOpen functional diagram

counter mode ON (subindex 1 Object $0 x 6003=$ " 0 ")


## CANOpen Object dictionary

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| 0x1000 | 0 | Device type | (profile 401=0x191) | UNSIGNED 32 | RO | 0x00010191 |
| $0 \times 1001$ | 0 | Error register | Error register (DS401) | UNSIGNED 8 | RO | 0 |
| 0x1002 | 0 | Manufacturer Status register | Status register | UNSIGNED 32 | RO | 0 |
| 0x1005 | 0 | SYNC COB-ID | The device consumes the SYNC message | UNSIGNED 32 | RW | 0x00000080 |
| 0x1006 | 0 | Comm. window lenght | Sync interval [us] | UNSIGNED 32 | RW | 0 |
| 0x1007 | 0 | Synchronous window lenght | The window [us] for the PDO transmission after the SYNC | UNSIGNED 32 | RW | 0 |
| 0x1008 | 0 | Manufacturer Device name | Device name | $\begin{aligned} & \text { VISIBLE } \\ & \text { STRING } \end{aligned}$ | RO | "ZC-24DI" |
| 0x1009 | 0 | Manufacturer HW version | Hardware version | VISIBLE STRING | RO | "SC000000" |
| 0x100A | 0 | Manufacturer SW version | Software version | VISIBLE STRING | RO | "SW001171" |
| 0x100C | 0 | Guard Time | [ms] | UNSIGNED 16 | RW | 0 |
| 0x100D | 0 | Life time factor | Max delay between two guarding telegrams= Guard_Time. Life_Time_Factor | UNSIGNED 8 | RW | 0 |
| $0 \times 1010$ | 0 | Store parameters/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 4 |
|  | 1 | Save all parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 2 | Save communication parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 3 | Save application parameters | Store not volatile parameters | UNSIGNED 32 | RW | 1 |
|  | 4 | Save manufactures parameters | Store not volatile parameters | UNSIGNED 32 | RW | 1 |


| 0x1011 | 0 | Restore default/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Restore all parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
|  | 2 | Restore communication parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
|  | 3 | Restore application parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
|  | 4 | Restore Manufactures parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
| 0x1014 | 0 | COB-ID emergency Object |  | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 80 \end{gathered}$ |
| $0 \times 1017$ | 0 | Heartbeat producer time | Time (ms) $0 \times 0000=$ there is not heartbeat service | UNSIGNED 16 | RW | 0 |
| 0x1018 | 0 | Identity object/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 4 |
|  | 1 | Vendor ID | Seneca srl | UNSIGNED 32 | RO | 0x00000249 |
|  | 2 | Product code | ZC-24DI Machine ID Code | UNSIGNED 32 | RO | 0x00000020 |
|  | 3 | Revision number |  | UNSIGNED 32 | RO | 0 |
|  | 4 | Serial number |  | UNSIGNED 32 | RO | 0 |
| 0x1200 | 0 | $\begin{aligned} & 1^{\text {st }} \text { SDO port/ } \\ & \text { number of } \\ & \text { mapped object } \\ & \hline \end{aligned}$ | Max subindex number | UNSIGNED 8 | RO | 2 |
|  | 1 | $\begin{aligned} & \text { COB-ID SDO } \\ & \text { Client-> Server } \end{aligned}$ | COB-ID of receive SDO | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 600 \\ \hline \end{gathered}$ |
|  | 2 | $\begin{aligned} & \text { COB-ID SDO } \\ & \text { Server-> Client } \end{aligned}$ | COB-ID of transmit SDO | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 580 \end{gathered}$ |
| 0x1800 | 0 | ```1 st transmit PDO parameters /number of mapped object``` | Max subindex number | UNSIGNED 8 | RO | 3 |
|  | 1 | COB-ID used by PDO | COB-ID of TPDO1 | UNSIGNED 32 | RW | $\begin{aligned} & \text { \$NODEID+ } \\ & 0 \times 40000180 \end{aligned}$ |
|  | 2 | Transmission type | ```Transmission type forTxPDO1 0x00=synchronous- acyclic 0x01 to 0xF0 =synchronous- cyclic 0xFF=asynchronous``` | UNSIGNED 8 | RW | 0xFF |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | $0 \times 0000$ |


| 0×1804 | 0 | 5th transmit PDO parameters /number of mapped object | Max subindex number | UNSIGNED 8 | RO | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | $\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$ | COB-ID of TPDO5 | UNSIGNED 32 | RW | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 40000280 \end{gathered}$ |
|  | 2 | Transmission type | Transmission type forTxPDO5 $0 \times 00=$ synchronousacyclic $0 \times 01$ to $0 x F 0$ =Synchronous- cyclic $0 \times F F=$ asynchronous | UNSIGNED 8 | RW | $0 \times 01$ |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | $0 \times 0000$ |
| 0x1805 | 0 | 6th transmit PDO parameters /number of mapped object | Max subindex number | UNSIGNED 8 | RO | 3 |
|  | 1 | COB-ID used by PDO | COB-ID of TPDO6 | UNSIGNED 32 | RW | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 40000380 \end{gathered}$ |
|  | 2 | Transmission type | ```Transmission type forTxPDO6 0x00=synchronous- acyclic 0x01 to 0xF0 =synchronous- cyclic 0xFF=asynchronous``` | UNSIGNED 8 | RW | $0 \times 01$ |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | 0x0000 |
| 0x1806 | 0 | 7th transmit PDO parameters /number of mapped object | Max subindex number | UNSIGNED 8 | RO | 3 |
|  | 1 | $\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$ | COB-ID of TPDO7 | UNSIGNED 32 | RW | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 40000480 \end{gathered}$ |
|  | 2 | Transmission type | Transmission type forTxPDO7 $0 \times 00=$ synchronousacyclic $0 \times 01$ to $0 x F 0$ =synchronous- cyclic $0 \times F F=$ asynchronous | UNSIGNED 8 | RW | $0 \times 01$ |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | 0x0000 |


| 0×1807 | 0 | 8th transmit PDO parameters /number of mapped object | Max subindex number | UNSIGNED 8 | RO | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | $\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$ | COB-ID of TPDO8 | UNSIGNED 32 | RW | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 40000300 \end{gathered}$ |
|  | 2 | Transmission type | Transmission type forTxPDO8 $0 \times 00=$ synchronous acyclic $0 \times 01$ to $0 x F 0$ =synchronous- cyclic $0 \times F F=$ asynchronous | UNSIGNED 8 | RW | $0 \times 01$ |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | $0 \times 0000$ |
| 0x1A00 | 0 | $1^{\text {st }}$ Transmit PDO mapping parameter/ number of mapped object | Max subindex number | UNSIGNED 8 | RW | 4 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: input 1..8) | UNSIGNED 32 | RW | $0 \times 60000108$ Object $=0 \times 6000$ Subindex=1 Length $=8 b i t$ |
|  | 2 | 2nd object to be mapped | Second object (default: input 9..16) | UNSIGNED 32 | RW | $\begin{gathered} \text { 0x60000208 } \\ \text { Object }=0 \times 6000 \\ \text { Subindex=2 } \\ \text { Length }=8 b i t \\ \hline \end{gathered}$ |
|  | 3 | 3rd object to be mapped | Third object (default: input 17..24) | UNSIGNED 32 | RW | $\begin{gathered} \text { 0x60000308 } \\ \text { Object=0x6000 } \\ \text { Subindex=3 } \\ \text { Length }=8 \text { bit } \\ \hline \end{gathered}$ |
|  | 4 | 4th object to be mapped | Fourth object (default: counter overflow) | UNSIGNED 32 | RW | 0x60000408 <br> Object $=0 \times 6000$ <br> Subindex=4 <br> Length $=8 \mathrm{bit}$ |
| 0x1A04 | 0 | 5th Transmit PDO mapping parameter/ number of mapped object | Max subindex number | UNSIGNED 8 | RW | 2 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: counter 1) | UNSIGNED 32 | RW | Ox22100120 Object=0x2210 Subindex=1 Length=32bit |
|  | 2 | 2nd object to be mapped | Second object (default: counter 2) | UNSIGNED 32 | RW | 0x22100220 Object=0x2210 Subindex=2 Length $=32 b i t$ |
| 0x1A05 | 0 | 6th Transmit PDO mapping parameter/ number of mapped object | Max subindex number | UNSIGNED 8 | RW | 2 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: counter 3) | UNSIGNED 32 | RW | 0x22100320 Object $=0 \times 2210$ Subindex=3 Length $=32 b i t$ |


|  | 2 | 2nd object to be mapped | Second object (default: counter 4) | UNSIGNED 32 | RW | $0 \times 22100420$ Object $=0 \times 2210$ Subindex=4 Length $=32$ bit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x1A06 | 0 | 7th Transmit PDO mapping parameter/ number of mapped object | Max subindex number | UNSIGNED 8 | RW | 2 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: counter 5) | UNSIGNED 32 | RW | 0x22100520 Object $=0 \times 2210$ Subindex=5 Length $=32 b i t$ |
|  | 2 | 2nd object to be mapped | Second object (default: counter 6) | UNSIGNED 32 | RW | 0x22100620 Object $=0 \times 2210$ Subindex=6 Length $=32 b i t$ |
| 0x1A07 | 0 | 8th Transmit PDO mapping parameter/ number of mapped object | Max subindex number | UNSIGNED 8 | RW | 2 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: counter 7) | UNSIGNED 32 | RW | $0 \times 22100720$ Object $=0 \times 2210$ Subindex=7 Length $=32 b i t$ |
|  | 2 | 2nd object to be mapped | Second object (default: counter 8) | UNSIGNED 32 | RW | $\begin{gathered} \text { 0x22100820 } \\ \text { Object=0x2210 } \\ \text { Subindex=8 } \\ \text { Length }=32 b i t \end{gathered}$ |
|  |  |  |  |  |  |  |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| $0 \times 2001$ | 0 | Module address | Station address (only if dip switch $4,5,6,7,8,9,10$ are OFF) | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 7 \mathrm{~F}=127$ |
| 0x2002 | 0 | Baudrate | Station Baudrate (only if dip switch 1,2,3 are OFF) <br> $1=20 \mathrm{kbps}$ <br> 2=50kbps <br> $3=125 \mathrm{kbps}$ <br> 4=250kbps <br> $5=500 \mathrm{kbps}$ <br> $6=800 \mathrm{kbps}$ <br> $7=1 \mathrm{Mbps}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 01$ |
| 0x2003 | 0 | Master firmware code |  | $\begin{gathered} \hline \text { UNSIGNED } \\ 16 \end{gathered}$ | RO | 1179 |
| 0x2030 | 0 | Device temperature/ number of parameters | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | Internal temperature | Station internal temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RO | 0 |
|  | 2 | Hi Hi temperature | Critical hot temperature (all operations stop) [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO | 950 |


|  | 3 | Hi temperature | Warning for too hot temperature [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO | 900 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | Low temperature | Critical low temperature (all operations stop) [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO | -250 |
| 0x2051 | 0 | Command | Command to <br> execute <br> Supported commands: <br> $0 \times 5 \mathrm{Cnn}$ force preset for counter mask nn $0 \times 5$ Dnn force reset for counter mask nn $0 \times 5$ Enn force overflow for counter mask nn | $\underset{16}{ }$ | RW | 0 |
| 0x2052 | 0 | Aux command | reserved | UNSIGNED 16 | RW | 0 |
| 0x2200 | 0 | Input filter parameter/ number of parameters | Max subindex number | UNSIGNED 8 | RO | 3 |
|  | 1 | Filter lenght | Number of samples to evaluate | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 40 |
|  | 2 | Counter threshold for high level | If counter >= threshold_high input is stated "high" | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 20 |
|  | 3 | Counter threshold for low level | If counter <= threshold_low input is stated "low" | $\underset{8}{\text { UNSIGNED }}$ | RW | 20 |
| 0x2210 | 0 | Input counters/ number of counter | Max subindex number | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 0x8 |
|  | 1 | Counter 1 value |  | $\begin{aligned} & \text { UNSIGNED } \\ & 32 \\ & \hline \end{aligned}$ | RO | 0 |
|  | 2 | Counter 2 value |  | $\begin{gathered} \hline \text { UNSIGNED } \\ 32 \end{gathered}$ | RO | 0 |
|  | 3 | Counter 3 value |  | $\begin{gathered} \hline \text { UNSIGNED } \\ 32 \end{gathered}$ | RO | 0 |
|  | 4 | Counter 4 value |  | $\begin{gathered} \hline \text { UNSIGNED } \\ 32 \\ \hline \end{gathered}$ | RO | 0 |
|  | 5 | Counter 5 value |  | $\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$ | RO | 0 |
|  | 6 | Counter 6 value |  | $\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$ | RO | 0 |
|  | 7 | Counter 7 value |  | $\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$ | RO | 0 |
|  | 8 | Counter 8 value |  | $\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$ | RO | 0 |
| 0x2211 | 0 | Preset for input counters/ number of counters |  | $\underset{8}{\text { UNSIGNED }}$ | RO | 0x8 |


|  | 1 | Counter 1 preset value | $\begin{gathered} \hline \hline \text { UNSIGNED } \\ 32 \end{gathered}$ | RW | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | Counter 2 preset value | $\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$ | RW | 0 |
|  | 3 | Counter 3 preset value | $\begin{gathered} \text { UNSIGNED }_{32} \end{gathered}$ | RW | 0 |
|  | 4 | Counter 4 preset value | $\begin{aligned} & \hline \text { UNSIGNED } \\ & 32 \\ & \hline \end{aligned}$ | RW | 0 |
|  | 5 | Counter 5 preset value | $\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$ | RW | 0 |
|  | 6 | Counter 6 preset value | $\begin{aligned} & \text { UNSIGNED } \\ & 32 \\ & \hline \end{aligned}$ | RW | 0 |
|  | 7 | Counter 7 preset value | UNSIGNED 32 | RW | 0 |
|  | 8 | Counter 8 preset value | $\begin{aligned} & \text { UNSIGNED } \\ & 32 \\ & \hline \end{aligned}$ | RW | 0 |


| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 \times 6000$ | 0 | 8 bit digital input counter1 overflow/ number of input 8 bit | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | Input [1..8] value | Read input [1..8] value | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RO | 0 |
|  | 2 | $\begin{aligned} & \text { Input [9..16] } \\ & \text { value } \end{aligned}$ | Read input [9..16] value | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 0 |
|  | 3 | Input [17..24] value | Read input [17..24] value | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 0 |
|  | 4 | Counter [1..8] overflow | Overflow status counter [1..8] | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 0 |
| $0 \times 6003$ | 0 | Filter mask enable/ number of input 8 bit | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 3 |
|  | 1 | Input [1..8] filter mask enable | ```Input [1..8] filter enable Mask bit0=filter disabled (and counters \(1 . .8\) enabled) Mask bit1 = filter enabled (and counters \(1 . .8\) disabled)``` | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0xFF |
|  | 2 | Input [9..16] filter mask enable | Input [9..16] filter mask enable | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0xFF |
|  | 3 | Input [17..24] filter mask enable | Input [17..24] filter mask enable | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0xFF |
| $0 \times 6005$ | 0 | Global interrupt enabled | $0=$ TxPDO <br> asynchronous disabled 1=TxPDO asynchronous enabled | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |


| 0x6007 | 0 | Interrupt mask Low to High/number of input | Max subindex number | $\begin{gathered} \hline \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Mask interrupt input [1..8] | Input [1..8] rising interrupt mask enable Mask bit0=rising interrupt disabled Mask bit1=rising interrupt enabled | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0xFF |
|  | 2 | Mask interrupt input [9..16] | Input [9..16] rising interrupt mask enable Mask bit0=rising interrupt disabled Mask bit1=rising interrupt enabled | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0xFF |
|  | 3 | Mask interrupt input [17..24] | Input [17..24] rising interrupt mask enable Mask bit0=rising interrupt disabled Mask bit1=rising interrupt enabled | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0xFF |
|  | 4 | Mask interrupt counter overflow | Counter [1..8] rising interrupt mask enable Mask bit0=rising interrupt disabled Mask bit1=rising interrupt enabled | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 00$ |
| 0x6008 | 0 | Interrupt mask High to Low/number of input | Max subindex number | $\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$ | RO | 3 |
|  | 1 | Mask interrupt input [1..8] | Input [1..8] falling interrupt mask enable Mask bit0= falling interrupt disabled Mask bit1=rising interrupt enabled | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0xFF |
|  | 2 | Mask interrupt input [9..16] | Input [9..16] falling interrupt mask enable Mask bit0= falling interrupt disabled Mask bit1 = falling interrupt enabled | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0xFF |
|  | 3 | Mask interrupt input [17..24] | Input [17..24] falling interrupt mask enable Mask bit0= falling interrupt disabled Mask bit1 = falling interrupt enabled | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0xFF |


| 0x6020 | 0 | Read input 1 bit/ number of input bit | Max subindex number | $\begin{gathered} \hline \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 24 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Input 1 value | $0=$ input is "low" <br> 1 =input is "high" | BOOLEAN | RO |  |
|  | 2 | Input 2 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 3 | Input 3 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 4 | Input 4 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 5 | Input 5 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 6 | Input 6 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 7 | Input 7 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 8 | Input 8 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 9 | Input 9 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 10 | Input 10 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 11 | Input 11 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 12 | Input 12 value | $\begin{aligned} & \hline 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 13 | Input 13 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 14 | Input 14 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 15 | Input 15 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 16 | Input 16 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 17 | Input 17 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 18 | Input 18 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 19 | Input 19 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 20 | Input 20 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 21 | Input 21 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 22 | Input 22 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 23 | Input 23 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 24 | Input 24 value | $\begin{aligned} & \hline 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |

## Seneca Z-PC Line module: ZC-24DO (CANOpen)

In this chapter are described the features of ZC-24DO module, based on CANOpen protocol.
NOTE: "0x" means an exadecimal number interpretation.

CANOpen features

| TECHNICAL DATA |  |  |
| :--- | :--- | :---: |
| Baud rate | $20,50,125,250,500,800,1000 \mathrm{kbps}$ |  |
| Typical ON/OFF delay | 1 ms (with filter disabled) |  |
|  | CANOpen TECHNICAL DATA |  |
| NMT | slave |  |
|  | Node guarding, heartbeat |  |
| Node ID | HW switch or software |  |
| Number of PDO | 1 RX |  |
| PDO modes | Event triggered, Sync (cyclic), Sync (acyclic) |  |
| PDO mapping | Variable |  |
| PDO linking | supported |  |
| Number of SDO | 1 server |  |
| Error message | yes |  |
| Supported application | Cia 301 v4.02 |  |
| Layer | Cia 401 v2.01 |  |

CANOpen TPDOs transmission type supported

| Object Value 0x180x Sub 2 | TRANSMISSION TYPE |
| :--- | :--- |
| 0 | Synchronous - acyclic |
| From 1 to 240 | Synchronous - cyclic |
| 255 | Asynchronous |

## CANOpen PDOs mapping

| OBJECTS FOR DEFAULT MAPPING |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PDO NR | COB-ID | MAPPED <br> OBJECTS | INDEX | SUBINDEX |  |
| RPDO1 | Digital output <br> $[1 . .8]$ | $0 \times 6200$ | 1 |  |  |
|  |  | Digital output <br> $[9 . .16]$ | $0 \times 6200$ | 2 |  |
|  |  | Digital output <br> $[17 . .24]$ | $0 \times 6200$ | 3 |  |

## CANOpen emergency message

The Emergency message is composed by:
2 bytes of EEC (Emergency error code)
1 bytes of ER (Error register)
4 bytes MEF (Manufacturer error filled objects) (0x1002)

| EMERGENCY MESSAGE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 | BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 | BYTE 5 | BYTE 6 |  |
| EER |  | ER | MEF |  |  |  |  |


| EEC |  |
| :--- | :--- |
| Code | Description |
| $0 \times 0000$ | No error |
| $0 \times 1000$ | Generic error |
| $0 \times 4201$ | CPU temperature over T_HIGH_HIGH |
| $0 \times 4202$ | CPU temperature over T_HIGH |
| $0 \times 4203$ | CPU temperature under T_LOW |
| $0 \times 8110$ | Communication Can Overrun |
| $0 \times 8120$ | Error passive |
| $0 \times 8130$ | Life Guard error |
| $0 \times 8140$ | Recovered from bus off |
| $0 \times F F 20$ | CPU error |
| $0 \times F F 30$ | Vext for outputs not found/ SPI communication error |
| $0 \times F F 50$ | Output fail |


| ER |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 |
| Generic | 0 | 0 | temperature | communication | 0 | 0 | Manufacture |

Where bit equal to " 0 " means "no error".

## CANOpen manufacturer specific profile

If hardware switches are in "from memory" mode, the node address is selectable by Object $0 \times 2001$.

| NODE ADDRESS (Object 0x2001) |  |
| :---: | :--- |
| Object value | Description |
| $0 . .127$ | Node address |

If hardware switches are in "from memory" mode, the baud rate is selectable by Object 0x2002.

| BAUDRATE (Object 0x2002) |  |
| :---: | :--- |
| Object value | Description |
| 1 | $20 \mathrm{kbit} / \mathrm{s}$ |
| 2 | $50 \mathrm{kbit} / \mathrm{s}$ |
| 3 | $125 \mathrm{kbit} / \mathrm{s}$ |
| 4 | $250 \mathrm{kbit} / \mathrm{s}$ |
| 5 | $500 \mathrm{kbit} / \mathrm{s}$ |
| 6 | $800 \mathrm{kbit} / \mathrm{s}$ |
| 7 | $1 \mathrm{Mbit} / \mathrm{s}$ |

Object $0 \times 2030$ can be used to monitor the CPU temperature.

| CPU TEMPERATURE (Object 0x2030) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Actual temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ |
| 2 | Temperature for HOT STOP ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 95.0^{\circ} \mathrm{C}$ |
| 3 | Temperature for HOT ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 90.0^{\circ} \mathrm{C}$ |
| 4 | Temperature for COLD ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right]-25.0^{\circ} \mathrm{C}$ |

The HOT STOP temperature sends in pre-operational the station.
The HOT ERROR and the COLD ERROR temperature sends the Emergency Object.
The Object is Read Only.

Object $0 \times 2520$ is used to monitor outputs status: " 1 "=error; " 0 "=ok.

| OUTPUT STATUS (Object 0x2520) |  |
| :---: | :--- |
| Command code | Description |
| $0 \times 5 \mathrm{C} 0 \mathrm{n}$ | Output [1..8] status |
| $0 \times 5 \mathrm{D} 0 \mathrm{n}$ | Output [9..16] status |
| $0 \times 5 \mathrm{E} 0 \mathrm{n}$ | Output [17..24] status |

## DIP-SWITCH configuration



## CANOpen LED description

| SERVICE (DIAGNOSTIC) LED DESCRIPTION |  |  |
| :---: | :---: | :---: |
| LED | LED status | Meaning |
| RUN | Blinking light | Pre-operational mode |
|  | Single flash | Stop mode |
|  | ON | Operational mode |
| ERROR | Single flash | At least one error counter has reached or exceed the warning level |
|  | Double flash | Guard event |
|  | Triple flash | The SYNC has not received within the configurated communication cycle timeout period |
|  | ON | The CAN controller is bus off |
|  | OFF | No error |
| FAIL | ON Blinking | Data receiving from RS232 |
| POWER | ON | Power supply |
| OUTPUT LED DESCRIPTION |  |  |
| LED | LED status | Meaning |
| 1-8 | ON | Output [1..8] is high |
|  | OFF | Output [1..8] is low |
| 9-16 | ON | Output [9..16] is high |
|  | OFF | Output [9..16] is low |
| 17-24 | ON | Output [17..24] is high |
|  | OFF | Output [17..24] is low |

## CANOpen digital output management

Object $0 \times 6200$ is used as 8 bit output.

| $\mathbf{8}$ BIT OUTPUT (Object 0x6200) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Output [1..8] value |
| 2 | Output [9..16] value |
| 3 | Output [17..24] value |

Object $0 \times 6206$ is used in FAULT case:
If the output n corresponding bit is " 0 ", this output keeps the last value;
If the output n corresponding bit is " 1 ", this output is loaded with object $0 \times 6207$

| OUTPUT ERROR MODE (Object 0x6206) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Output [1..8] error mode |
| 2 | Output [9..16] error mode |
| 3 | Output [17..24] error mode |

Object $0 \times 6207$ is used to store outputs values to load, in fault case (only if in output error mode the corresponding bit value is " 1 ").

| OUTPUT ERROR VALUE |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Output [1..8] error value |
| 2 | Output [9..16] error value |
| 3 | Output [17..24] error value |


| OUTPUT SINGLE BIT (Object 0x6220) |  |
| :---: | :---: |
| Subindex | Description |
| 1 | Output 1 value |
| 2 | Output 2 value |
| 3 | Output 3 value |
| 4 | Output 4 value |
| 5 | Output 5 value |
| 6 | Output 6 value |
| 7 | Output 7 value |
| 8 | Output 8 value |
| 9 | Output 9 value |
| 10 | Output 10 value |
| 11 | Output 11 value |
| 12 | Output 12 value |
| 13 | Output 13 value |
| 14 | Output 14 value |
| 15 | Output 15 value |
| 16 | Output 16 value |
| 17 | Output 17 value |
| 18 | Output 18 value |
| 19 | Output 19 value |
| 20 | Output 20 value |
| 21 | Output 21 value |
| 22 | Output 22 value |
| 23 | Output 23 value |
| 24 | Output 24 value |
|  |  |

## CANOpen functional diagram

## Digital output



## CANOpen Object dictionary

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| 0x1000 | 0 | Device type | (profile 401=0x191) | UNSIGNED 32 | RO | 0x00020191 |
| $0 \times 1001$ | 0 | Error register | Error register (DS401) | UNSIGNED 8 | RO | 0 |
| 0x1002 | 0 | Manufacturer Status register | Status register | UNSIGNED 32 | RO | 0 |
| 0x1005 | 0 | SYNC COB-ID | The device consumes the SYNC message | UNSIGNED 32 | RW | 0x00000080 |
| 0x1006 | 0 | Comm. window lenght | Sync interval [us] | UNSIGNED 32 | RW | 0 |
| 0x1007 | 0 | Synchronous window lenght | The window [us] for the PDO transmission after the SYNC | UNSIGNED 32 | RW | 0 |
| 0x1008 | 0 | Manufacturer Device name | Device name | $\begin{aligned} & \text { VISIBLE } \\ & \text { STRING } \end{aligned}$ | RO | "ZC-24DO" |
| 0x1009 | 0 | Manufacturer HW version | Hardware version | VISIBLE STRING | RO | "SC000000" |
| 0x100A | 0 | Manufacturer SW version | Software version | VISIBLE STRING | RO | "SW001181" |
| 0x100C | 0 | Guard Time | [ms] | UNSIGNED 16 | RW | 0 |
| 0x100D | 0 | Life time factor | Max delay between two guarding telegrams= Guard_Time. Life_Time_Factor | UNSIGNED 8 | RW | 0 |
| $0 \times 1010$ | 0 | Store parameters/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 4 |
|  | 1 | Save all parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 2 | Save communication parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 3 | Save application parameters | Store not volatile parameters | UNSIGNED 32 | RW | 1 |
|  | 4 | Save manufactures parameters | Store not volatile parameters | UNSIGNED 32 | RW | 1 |


| 0x1011 | 0 | Restore default/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Restore all parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
|  | 2 | Restore communication parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
|  | 3 | Restore application parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
|  | 4 | Restore Manufactures parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
| 0x1014 | 0 | COB-ID emergency Object |  | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 80 \end{gathered}$ |
| $0 \times 1017$ | 0 | Heartbeat producer time | Time (ms) $0 \times 0000=$ there is not heartbeat service | UNSIGNED 16 | RW | 0 |
| 0x1018 | 0 | Identity object/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 4 |
|  | 1 | Vendor ID | Seneca srl | UNSIGNED 32 | RO | 0x00000249 |
|  | 2 | Product code | ZC-24DO Machine ID Code | UNSIGNED 32 | RO | $0 \times 00000021$ |
|  | 3 | Revision number |  | UNSIGNED 32 | RO | 0 |
|  | 4 | Serial number |  | UNSIGNED 32 | RO | 0 |
| 0x1200 | 0 | $\begin{aligned} & 1^{\text {st }} \text { SDO port/ } \\ & \text { number of } \\ & \text { mapped object } \\ & \hline \end{aligned}$ | Max subindex number | UNSIGNED 8 | RO | 2 |
|  | 1 | $\begin{aligned} & \text { COB-ID SDO } \\ & \text { Client-> Server } \end{aligned}$ | COB-ID of receive SDO | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 600 \\ \hline \end{gathered}$ |
|  | 2 | $\begin{aligned} & \text { COB-ID SDO } \\ & \text { Server-> Client } \end{aligned}$ | COB-ID of transmit SDO | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 580 \end{gathered}$ |
| 0x1400 | 0 | $\begin{aligned} & \hline 1^{\text {st }} \text { receive PDO } \\ & \text { parameter } \\ & \text { /number of } \\ & \text { mapped object } \\ & \hline \end{aligned}$ | Max subindex number | UNSIGNED 8 | RO | 3 |
|  | 1 | COB-ID used by PDO | COB-ID of RxPDO1 | UNSIGNED 32 | RW | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 200 \\ \hline \end{gathered}$ |
|  | 2 | Transmission type | ```Transmission type for PDO1 0x00=synchronous- acyclic 0x01 to 0xF0 =synchronous- cyclic 0xFF=asynchronous``` | UNSIGNED 8 | RW | 0xFF |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | $0 \times 0000$ |


| 0x1600 | 0 | $1^{\text {st }}$ receive PDO <br> mapping <br> parameter/ <br> number of mapping objects | Max subindex number | UNSIGNED 8 | RW | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default output: 1..8) | UNSIGNED 32 | RW | $\begin{gathered} \hline 0 \times 62000108 \\ \text { Object }=0 \times 6000 \\ \text { Subindex=1 } \\ \text { Length }=8 \text { bit } \\ \hline \end{gathered}$ |
|  | 2 | 2nd object to be mapped | Second object (default output: 9..16) | UNSIGNED 32 | RW | Ox62000208 Object $=0 \times 6000$ Subindex=2 Length $=8$ bit |
|  | 3 | 3rd object to be mapped | Third object (default output: 17..24) | UNSIGNED 32 | RW | Ox62000308 Object $=0 \times 6000$ Subindex=3 Length $=8$ bit |
| MANUEAOTURER PROEAEAEEA |  |  |  |  |  |  |
| INDEX | $\begin{gathered} \text { SUB } \\ \text { INDEX } \end{gathered}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| $0 \times 2001$ | 0 | Module address | Station address (only if dip switch $4,5,6,7,8,9,10$ are OFF) | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 7 \mathrm{~F}=127$ |
| 0x2002 | 0 | Baudrate | Station Baudrate (only if dip switch 1,2,3 are OFF) <br> $1=20 \mathrm{kbps}$ <br> 2=50kbps <br> $3=125 \mathrm{kbps}$ <br> $4=250 \mathrm{kbps}$ <br> $5=500 \mathrm{kbps}$ <br> $6=800 \mathrm{kbps}$ <br> $7=1 \mathrm{Mbps}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 01$ |
| $0 \times 2003$ | 0 | Master firmware code |  | $\begin{gathered} \hline \text { UNSIGNED } \\ 16 \\ \hline \end{gathered}$ | RO | 1185 |
| $0 \times 2030$ | 0 | Device temperature | number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | Internal temperature | [ ${ }^{\circ} \mathrm{C} / 10$ ] | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RO | 0 |
|  | 2 | Hi Hi temperature | [ ${ }^{\circ} \mathrm{C} / 10$ ] | $\begin{gathered} \text { INTEGER } \\ 16 \\ \hline \end{gathered}$ | RO | 950 |
|  | 3 | Hi temperature | [ ${ }^{\circ} \mathrm{C} / 10$ ] | $\begin{gathered} \hline \text { INTEGER } \\ 16 \\ \hline \end{gathered}$ | RO | 900 |
|  | 4 | Low temperature | [ ${ }^{\circ} \mathrm{C} / 10$ ] | $\begin{gathered} \text { INTEGER } \\ 16 \\ \hline \end{gathered}$ | RO | -250 |
| 0x2520 | 0 | Output status | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 3 |
|  | 1 | $\begin{aligned} & \text { Output [1..8] } \\ & \text { status } \end{aligned}$ | $\begin{aligned} & 1 \text { = output status } \\ & \text { ERROR } \\ & 0=\text { output status OK } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 0 |
|  | 2 | Output [9..16] status | $\begin{aligned} & 1 \text { = output status } \\ & \text { ERROR } \\ & 0=\text { output status OK } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 0 |
|  | 3 | Output [17..24] status | 1 = output status ERROR <br> $0=$ output status OK | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 0 |


| STANDAR |  |  | D트NC틀 | AREA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INDEX | $\begin{gathered} \text { SUB } \\ \text { INDEX } \end{gathered}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| 0x6200 | 0 | 8 bit output/ number of output 8 bit | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 3 |
|  | 1 | Digital output $[1 . .8]$ | Output [1..8] values | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0 |
|  | 2 | Digital output [9..16] | Output [9..16] values | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0 |
|  | 3 | Digital output [17..24] | Output [17..24] values | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
| 0x6206 | 0 | Error mode output/ number of output | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 1 |
|  | 1 | Output [1..8] error mode | $\begin{aligned} & 1=\text { load } 0 \times 6207 \text { value } \\ & 0=\text { keep last } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0xFF |
|  | 2 | Output [9..16] error mode | $\begin{aligned} & 1=\text { load } 0 \times 6207 \text { value } \\ & 0=\text { keep last } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0xFF |
|  | 3 | Output [17..24] error mode | $\begin{aligned} & 1=\text { load } 0 \times 6207 \text { value } \\ & 0=\text { keep last } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0xFF |
| $0 \times 6207$ | 0 | Error value output | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 1 |
|  | 1 | Output [1..8] error value | Value to load in fail case | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 00$ |
|  | 2 | Output [9..16] error value | Value to load in fail case | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | $0 \times 00$ |
|  | 3 | Output [17..24] error value | Value to load in fail case | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 00$ |
| $0 \times 6220$ | 0 | Single bit output | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 8 |
|  | 1 | Output 1 value |  | BOOLEAN | RW | 0 |
|  | 2 | Output 2 value |  | BOOLEAN | RW | 0 |
|  | 3 | Output 3 value |  | BOOLEAN | RW | 0 |
|  | 4 | Output 4 value |  | BOOLEAN | RW | 0 |
|  | 5 | Output 5 value |  | BOOLEAN | RW | 0 |
|  | 6 | Output 6 value |  | BOOLEAN | RW | 0 |
|  | 7 | Output 7 value |  | BOOLEAN | RW | 0 |
|  | 8 | Output 8 value |  | BOOLEAN | RW | 0 |
|  | 9 | Output 9 value |  | BOOLEAN | RW | 0 |
|  | 10 | Output 10 value |  | BOOLEAN | RW | 0 |
|  | 11 | Output 11 value |  | BOOLEAN | RW | 0 |
|  | 12 | Output 12 value |  | BOOLEAN | RW | 0 |
|  | 13 | Output 13 value |  | BOOLEAN | RW | 0 |
|  | 14 | Output 14 value |  | BOOLEAN | RW | 0 |
|  | 15 | Output 15 value |  | BOOLEAN | RW | 0 |
|  | 16 | Output 16 value |  | BOOLEAN | RW | 0 |
|  | 17 | Output 17 value |  | BOOLEAN | RW | 0 |
|  | 18 | Output 18 value |  | BOOLEAN | RW | 0 |
|  | 19 | Output 19 value |  | BOOLEAN | RW | 0 |
|  | 20 | Output 20 value |  | BOOLEAN | RW | 0 |
|  | 21 | Output 21 value |  | BOOLEAN | RW | 0 |
|  | 22 | Output 22 value |  | BOOLEAN | RW | 0 |
|  | 23 | Output 23 value |  | BOOLEAN | RW | 0 |
|  | 24 | Output 24 value |  | BOOLEAN | RW | 0 |

## Seneca Z-PC Line module: ZC-16DI-8DO (CANOpen)

In this chapter are described the features of ZC-16DI-8DO module, based on CANOpen protocol.

NOTE: "0x" means an exadecimal number interpretation.

## CANOpen features

| TECHNICAL DATA |  |
| :--- | :--- |
| Baud rate | $20,50,125,250,500,800,1000 \mathrm{kbps}$ |
| Counters nr/type | $8(32 \mathrm{bit})$ from input $1 . .8$ |
| Max frequency for counters | 10 kHz |
| Typical ON/OFF delay | 1 ms (with filter disabled) for inputs <br>  <br>  <br>  <br> CANOpen TECHNICAL DATA <br>  <br> Node ID <br>  <br> slave <br> Number of PDO <br> PDO modes <br> PDO mapping <br> PDO linking <br> Number of SDO <br> Error message <br> Supported application <br> Layer |

CANOpen TPDOs transmission type supported

| Object Value 0x180x Sub 2 | TRANSMISSION TYPE |
| :--- | :--- |
| 0 | Synchronous - acyclic |
| From 1 to 240 | Synchronous - cyclic |
| 255 | Asynchronous |

## CANOpen PDOs mapping

| OBJECTS FOR DEFAULT MAPPING |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PDO NR | COB-ID | MAPPED OBJECTS | INDEX | SUBINDEX |
| RPDO1 | 0x200 + Nodeld | Digital input [1..8] | $0 \times 6200$ | 1 |
|  |  | Digital input [1..8] | $0 \times 6000$ | 1 |
|  |  | Digital input [9..16] | $0 \times 6000$ | 2 |
| TPDO1 | $\begin{gathered} 0 \times 40000180 \\ + \\ \text { Nodeld } \end{gathered}$ | Digital input [17..24] <br> Overflow counter [1..8] | $\begin{aligned} & 0 \times 6000 \\ & 0 \times 6000 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3 \\ & 4 \\ & \hline \end{aligned}$ |
| TPDO5 | $\begin{gathered} 0 \times 40000280 \\ + \\ \text { Nodeld } \\ \hline \end{gathered}$ | Counter 1 value <br> Counter 2 value | $0 \times 2210$ <br> $0 \times 2210$ | 1 <br> 2 |
| TPDO6 | $\begin{gathered} 0 \times 40000380 \\ + \\ \text { Nodeld } \\ \hline \end{gathered}$ | Counter 3 value <br> Counter 4 value | $0 \times 2210$ <br> $0 \times 2210$ | 3 4 |
| TPDO7 | $\begin{gathered} 0 \times 40000480 \\ + \\ \text { Nodeld } \\ \hline \end{gathered}$ | Counter 5 value <br> Counter 6 value | $0 \times 2210$ <br> $0 \times 2210$ | 5 6 |
| TPDO8 | $\begin{gathered} 0 \times 40000300 \\ + \\ \text { Nodeld } \end{gathered}$ | Counter 7 value <br> Counter 8 value | $0 \times 2210$ <br> $0 \times 2210$ | 7 8 |

Note that TPDO COB-ID must start with $0 \times 4$.

## CANOpen emergency message

The Emergency message is composed by:
2 bytes of EEC (Emergency error code)
1 bytes of ER (Error register)
4 bytes MEF (Manufacturer error filled objects) (0x1002)

| EMERGENCY MESSAGE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 BYY | BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 | BYTE 5 | BYTE 6 |  |
| EER |  | ER | MEF |  |  |  |  |


| EEC |  |
| :--- | :--- |
| CODE | DESCRIPTION |
| $0 \times 0000$ | No error |
| $0 \times 1000$ | Generic error |
| $0 \times 4201$ | CPU temperature over T_HIGH_HIGH |
| $0 \times 4202$ | CPU temperature over T_HIGH |
| $0 \times 4203$ | CPU temperature under T_LOW |
| $0 \times 8110$ | Communication Can Overrun |
| $0 \times 8120$ | Error passive |
| $0 \times 8130$ | Life Guard error |
| $0 \times 8140$ | Recovered from bus off |
| $0 \times F F 20$ | CPU error |
| 0xFF30 | Vext for outputs not found/ SPI communication error |
| 0xFF50 | Output fail |


| ER |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 |  |
| Generic | 0 | 0 | temperature | communication | 0 | 0 | Manufacture |  |

Where bit equal to "0" means "no error".

## CANOpen manufacturer specific profile

If hardware switches are in "from memory" mode, the node address is selectable by Object $0 \times 2001$.

## NODE ADDRESS (Object 0x2001)

| NODE ADDRESS (Object 0x2001) |  |
| :---: | :--- |
| Object value | Description |
| $0 . .127$ | Node address |

If hardware switches are in "from memory" mode, the baud rate is selectable by Object 0x2002.

| BAUDRATE (Object 0x2002) |  |
| :---: | :--- |
| Object value | Description |
| 1 | $20 \mathrm{kbit} / \mathrm{s}$ |
| 2 | $50 \mathrm{kbit} / \mathrm{s}$ |
| 3 | $125 \mathrm{kbit} / \mathrm{s}$ |
| 4 | $250 \mathrm{kbit} / \mathrm{s}$ |
| 5 | $500 \mathrm{kbit} / \mathrm{s}$ |
| 6 | $800 \mathrm{kbit} / \mathrm{s}$ |
| 7 | $1 \mathrm{Mbit} / \mathrm{s}$ |

Object $0 \times 2030$ can be used to monitor the CPU temperature.

| CPU TEMPERATURE (Object 0x2030) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Actual temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ |
| 2 | Temperature for HOT STOP ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 95.0^{\circ} \mathrm{C}$ |
| 3 | Temperature for HOT ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 90.0^{\circ} \mathrm{C}$ |
| 4 | Temperature for COLD ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right]-25.0^{\circ} \mathrm{C}$ |

The HOT STOP temperature sends in pre-operational the station.
The HOT ERROR and the COLD ERROR temperature sends the Emergency Object.
The Object is Read Only.

Object $0 \times 2051$ is used to send commands to the station module.

| CPU COMMAND (Object 0x2051) |  |
| :---: | :--- |
| Command code | Description |
| $0 \times 5 \mathrm{C} 0 \mathrm{n}$ | Force the preset value (object 0x2211) for counter n |
| $0 \times 5 \mathrm{D} 0 \mathrm{n}$ | Force the reset for counter n |
| $0 \times 5 \mathrm{E} 0 \mathrm{n}$ | Force the overflow reset (object 0x6000 sub 4) |

Object $0 \times 2200$ is used to customize the input filter.

| FILTER PARAMETERS (Object 0x2200) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Samples number for filter (default 40) |
| 2 | Counter threshold for high level (default 20) |
| 3 | Counter threshold for low level (default 20) |

For a high level sample the filter counter is incremented, otherwise for a low level the filter counter is decremented.

When the filter counter is greater or equal to subindex2, the input is stated "high".
When the filter counter is lower or equal to subindex3, the input is stated "low".
Between subindex2 and subindex3, no state is asserted (dead zone).

Note that the filter can be disabled by selecting:
Subindex $1=1$

Subindex2=0
Subindex $3=0$

Object $0 \times 2210$ stores the values of the 8 counters in 32bit format.

| DIGITAL COUNTERS (Object 0x2210) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Counter 1 value |
| 2 | Counter 2 value |
| 3 | Counter 3 value |
| 4 | Counter 4 value |
| 5 | Counter 5 value |
| 6 | Counter 6 value |
| 7 | Counter 7 value |
| 8 | Counter 8 value |


| DIGITAL COUNTERS (Object 0x2211) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Preset Counter 1 value |
| 2 | Preset Counter 2 value |
| 3 | Preset Counter 3 value |
| 4 | Preset Counter 4 value |
| 5 | Preset Counter 5 value |
| 6 | Preset Counter 6 value |
| 7 | Preset Counter 7 value |
| 8 | Preset Counter 8 value |

## DIP-SWITCH configuration



## CANOpen LED description

| SERVICE (DIAGNOSTIC) LED DESCRIPTION |  |  |
| :---: | :---: | :---: |
| LED | LED status | Meaning |
| RUN | Blinking light | Pre-operational mode |
|  | Single flash | Stop mode |
|  | ON | Operational mode |
| ERROR | Single flash | At least one error counter has reached or exceed the warning level |
|  | Double flash | Guard event |
|  | Triple flash | The SYNC has not received within the configurated communication cycle timeout period |
|  | ON | The CAN controller is bus off |
|  | OFF | No error |
| FAIL | ON Blinking | Data receiving from RS232 |
| POWER | ON | Power supply |
| INPUT/OUTPUT LED DESCRIPTION |  |  |
| LED | LED status | Meaning |
| 1-8 | ON | Input [1..8] is high |
|  | OFF | Input [1..8] is low |
| 9-16 | ON | Input [9..16] is high |
|  | OFF | Input [9..16] is low |
| 10-80 | ON | Output [1..8] is high |
|  | OFF | Output [1..8] is low |

## CANOpen digital input management

Object $0 \times 6003$ is used for input filter configuration.

| FILTER CONSTANT INPUT (Object 0x6003) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Filter enabled for input [1..8] |
| 2 | Filter enabled for input [9..16] read only |

If the value of object $0 x 6003$ subindex 1 is " 0 " all inputs from 1 to 8 are configured in counter mode, in other word counter mode switched ON.

If the value of object $0 \times 6003$ subindex 1 is not equal to " 0 " the counter mode is switched OFF.

Object $0 \times 6005$ is used for Interrupt Enable:
If the value is " 1 " the station can generate a synchronous TxPDO (DEFAULT setting).
If the value is " 0 " the station can't generate a synchronous TxPDO.

Object $0 \times 6007$ is used as Digital Interrupt Mask Low to High.

| INTERRUPT MASK LOW TO HIGH (Object 0x6007) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Interrupt mask on rising edge input [1..8] |
| 2 | Interrupt mask on rising edge input [9..16] |
| 4 | Interrupt mask for counters overflow |

For subindex for 1 and 2 , if value is " 1 " the generation of TxPDO on rising edge is enabled.
If subindex 3 value is " 1 ", the generation of TxPDO on all 8 counters overflows is enabled.

Object $0 \times 6008$ is used as Digital Interrupt Mask High to Low.
INTERRUPT MASK HIGH TO LOW (Object 0x6008)

| INTERRUPT MASK HIGH TO LOW (Object 0x6008) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Interrupt mask on falling edge input [1..8] |
| 2 | Interrupt mask on falling edge input [9..16] |

For subindex 1 and 2 , if values is " 1 " the generation of TxPDO on falling edge is enable.

## CANOpen digital output management

Object $0 \times 6200$ is used as 8 bit output.

|  | 8 BIT OUTPUT (Object 0x6200) |
| :---: | :--- |
| Subindex | Description |
| 1 | Output [1..8] value |

Object $0 \times 6206$ is used in FAULT case:
If the output n corresponding bit is " 0 ", this output keeps the last value;
If the output n corresponding bit is " 1 ", this output is loaded with object $0 \times 6207$

| OUTPUT ERROR MODE (Object 0x6206) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Output [1..8] error mode |

Object $0 \times 6207$ is used to store outputs values to load, in fault case (only if in output error mode the corresponding bit value is " 1 ").

## OUTPUT ERROR VALUE

| OUTPUT ERROR VALUE |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Output [1..8] error value |

Object $0 \times 6220$ is used for outputs corresponding bits.

| OUTPUT SINGLE BIT (Object 0x6220) |  |
| :---: | :---: |
| Subindex | Description |
| 1 | Output 1 value |
| 2 | Output 2 value |
| 3 | Output 3 value |
| 4 | Output 4 value |
| 5 | Output 5 value |
| 6 | Output 6 value |
| 7 | Output 7 value |
| 8 | Output 8 value |

## CANOpen functional diagram

counter mode ON (subindex 1 Object $0 \times 6003=$ " 0 ")


## CANOpen functional diagram

## Digital output



## CANOpen Object dictionary

| COMMUNICATION PROFIE AREA |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INDEX | $\begin{gathered} \text { SUB } \\ \text { INDEX } \end{gathered}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| 0x1000 | 0 | Device type | (profile 401=0×191) | UNSIGNED 32 | RO | 0x00030191 |
| 0x1001 | 0 | Error register | Error register (DS401) | UNSIGNED 8 | RO | 0 |
| 0x1002 | 0 | Manufacturer Status register | Status register | UNSIGNED 32 | RO | 0 |
| 0x1005 | 0 | SYNC COB-ID | The device consumes the SYNC message | UNSIGNED 32 | RW | 0x80 |
| 0x1006 | 0 | Comm. window lenght | Sync interval [us] | UNSIGNED 32 | RW | 0 |
| 0x1007 | 0 | Synchronous window lenght | The window [us] for the PDO transmission after the SYNC | UNSIGNED 32 | RW | 0 |
| 0x1008 | 0 | Manufacturer Device name | Device name | VISIBLE STRING | RO | "ZC-16DI-8DO" |
| 0x1009 | 0 | Manufacturer HW version | Hardware version | VISIBLE STRING | RO | "SC000000" |
| 0x100A | 0 | Manufacturer SW version | Software version | VISIBLE STRING | RO | "SW001191" |
| 0x100C | 0 | Guard Time | [ms] | UNSIGNED 16 | RW | 0 |
| 0x100D | 0 | Life time factor | Max delay between two guarding telegrams= Guard_Time. Life Time Factor | UNSIGNED 8 | RW | 0 |
| 0x1010 | 0 | Store parameters/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 4 |
|  | 1 | Save all parameters | Store not volatile parameters (write in ASCII "save" for store process MSB $0 \times 65766173$ LSB) | UNSIGNED 32 | RW | 1 |
|  | 2 | Save communication parameters | Store not volatile parameters (write in ASCII "save" for store process MSB $0 \times 65766173$ LSB) | UNSIGNED 32 | RW | 1 |
|  | 3 | Save application parameters | Store not volatile parameters | UNSIGNED 32 | RW | 1 |
|  | 4 | Save manufactures parameters | Store not volatile parameters | UNSIGNED 32 | RW | 1 |


| $0 \times 1011$ | 0 | Restore default/ <br> number of <br> mapped object | Max subindex number | UNSIGNED 8 | RO |
| :---: | :---: | :--- | :--- | :--- | :---: |


| 0x1600 | 0 | $1^{\text {st }}$ receive PDO <br> mapping <br> parameter/ <br> number of <br> mapping objects | Max subindex number | UNSIGNED 8 | RW |
| :---: | :---: | :--- | :--- | :--- | :---: |


| 0x1806 | 0 | 7th transmit <br> PDO <br> parameters <br> /number of <br> mapped object | Max subindex number | UNSIGNED 8 | RO |
| :---: | :---: | :--- | :--- | :--- | :---: |


|  | 2 | 2nd object to be mapped | Second object (default: counter 2) | UNSIGNED 32 | RW | $\begin{gathered} \hline \text { Ox22100220 } \\ \text { Object=0x2210 } \\ \text { Subindex }=2 \\ \text { Length }=32 \text { bit } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x1A05 | 0 | 6th Transmit PDO mapping parameter/ number of mapped object | Max subindex number | UNSIGNED 8 | RW | 0 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: counter 3) | UNSIGNED 32 | RW | $0 \times 22100320$ Object=0x2210 Subindex=3 Length=32bit |
|  | 2 | 2nd object to be mapped | Second object (default: counter 4) | UNSIGNED 32 | RW | $\begin{gathered} 0 \times 22100420 \\ \text { Object }=0 \times 2210 \\ \text { Subindex=4 } \\ \text { Length }=32 \text { bit } \end{gathered}$ |
| 0x1A06 | 0 | 7th Transmit PDO mapping parameter/ number of mapped object | Max subindex number | UNSIGNED 8 | RW | 0 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: counter 5) | UNSIGNED 32 | RW | $0 \times 22100520$ Object=0x2210 Subindex=5 Length=32bit |
|  | 2 | 2nd object to be mapped | Second object (default: counter 6) | UNSIGNED 32 | RW | Ox22100620 Object=0x2210 Subindex=6 Length $=32 b i t$ |
| 0x1A07 | 0 | 8th Transmit PDO mapping parameter/ number of mapped object | Max subindex number | UNSIGNED 8 | RW | 0 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: counter 7) | UNSIGNED 32 | RW | 0x22100720 <br> Object=0x2210 <br> Subindex=7 <br> Length=32bit |
|  | 2 | 2nd object to be mapped | Second object (default: counter 8) | UNSIGNED 32 | RW | Ox22100820 Object=0x2210 Subindex=8 Length $=32 b i t$ |
|  |  |  |  |  |  |  |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| $0 \times 2001$ | 0 | Module address | Station address (only if dip switch $4,5,6,7,8,9,10$ are OFF) | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 7 \mathrm{~F}=127$ |
| 0x2002 | 0 | Baudrate | Station Baudrate (only if dip switch 1,2,3 are OFF) <br> $1=20 \mathrm{kbps}$ <br> 2=50kbps <br> $3=125 \mathrm{kbps}$ <br> 4=250kbps <br> 5=500kbps <br> $6=800 \mathrm{kbps}$ <br> $7=1 \mathrm{Mbps}$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 01$ |


| 0x2003 | 0 | Master firmware code |  | $\begin{gathered} \hline \hline \text { UNSIGNED } \\ 16 \\ \hline \end{gathered}$ | RO | 1185 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x2030 | 0 | Device temperature/ number of parameters | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | Internal temperature | Station internal temperature <br> [ ${ }^{\circ} \mathrm{C} / 10$ ] | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RO | 0 |
|  | 2 | Hi Hi temperature | Critical hot temperature (all operations stop) [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO | 950 |
|  | 3 | Hi temperature | Warning for too hot temperature [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO | 900 |
|  | 4 | Low temperature | $\begin{aligned} & \text { Critical low } \\ & \text { temperature (all } \\ & \text { operations stop) } \\ & {\left[{ }^{\circ} \mathrm{C} / 10\right]} \end{aligned}$ | INTEGER 16 | RO | -250 |
| $0 \times 2051$ | 0 | Command | Command to execute Supported commands: $0 \times 5 \mathrm{Cnn}$ force preset for counter mask nn $0 \times 5$ Dnn force reset for counter mask nn 0x5Enn force overflow for counter mask nn | $\begin{gathered} \hline \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
| $0 \times 2052$ | 0 | Aux command | reserved | $\begin{gathered} \text { UNSIGNED } \\ 16 \\ \hline \end{gathered}$ | RW | 0 |
| 0x2200 | 0 | Input filter parameter/ number of parameters | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 3 |
|  | 1 | Filter lenght | Number of samples to evaluate | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 40 |
|  | 2 | Counter threshold for high level | If counter >= threshold_high input is stated "high" | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 20 |
|  | 3 | Counter threshold for low level | If counter <= threshold_low input is stated "low" | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 20 |
| $0 \times 2210$ | 0 | Input counters/ number of counter | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 0x8 |
|  | 1 | Counter 1 value |  | $\begin{gathered} \text { UNSIGNED } \\ 32 \\ \hline \end{gathered}$ | RO | 0 |
|  | 2 | Counter 2 value |  | $\begin{gathered} \hline \text { UNSIGNED } \\ 32 \end{gathered}$ | RO | 0 |
|  | 3 | Counter 3 value |  | $\begin{gathered} \hline \text { UNSIGNED } \\ 32 \\ \hline \end{gathered}$ | RO | 0 |
|  | 4 | Counter 4 value |  | $\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$ | RO | 0 |


$\left.\begin{array}{|c|c|l|l|l|l|}\hline \text { 0x6003 } & 0 & \begin{array}{l}\text { Filter mask } \\ \text { enable/ } \\ \text { number of } \\ \text { input 8 bit }\end{array} & \begin{array}{l}\text { Max subindex } \\ \text { number }\end{array} & \begin{array}{l}\text { UNSIGNED } \\ 8\end{array} & \text { RO }\end{array}\right]$ 3

| $0 \times 6008$ | 0 | Interrupt mask High to Low/number of input | Max subindex number | $\begin{gathered} \hline \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Mask interrupt input [1..8] | Input [1..8] falling interrupt mask enable Mask bit0= falling interrupt disabled Mask bit1=falling interrupt enabled | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0xFF |
|  | 2 | Mask interrupt input [9..16] | Input [9..16] falling interrupt mask enable Mask bit0= falling interrupt disabled Mask bit1 = falling interrupt enabled | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0xFF |
| 0x6020 | 0 | Read input 1 bit/ number of input bit | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 16 |
|  | 1 | Input 1 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 2 | Input 2 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 3 | Input 3 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 4 | Input 4 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 5 | Input 5 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 6 | Input 6 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 7 | Input 7 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 8 | Input 8 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 9 | Input 9 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 10 | Input 10 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 11 | Input 11 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 12 | Input 12 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 13 | Input 13 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 14 | Input 14 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 15 | Input 15 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |
|  | 16 | Input 16 value | $\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$ | BOOLEAN | RO |  |


| $0 \times 6200$ | 0 | 8 bit output/ number of output 8 bit | Max subindex number | $\begin{gathered} \hline \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Digital output [1..8] | Output [1..8] values | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0 |
| $0 \times 6206$ | 0 | Error mode output/ number of output | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 1 |
|  | 1 | Output [1..8] error mode | $\begin{aligned} & \begin{array}{l} 1=\text { load } 0 \times 6207 \text { value } \\ 0=\text { keep last } \end{array} \\ & \hline \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | $0 \times F F$ |
| $0 \times 6207$ | 0 | Error value output | Max subindex number | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 1 |
|  | 1 | Output [1..8] error value | Value to load in fail case | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 00$ |
| $0 \times 6220$ | 0 | Single bit output | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RO | 8 |
|  | 1 | Output 1 value |  | BOOLEAN | RW | 0 |
|  | 2 | Output 2 value |  | BOOLEAN | RW | 0 |
|  | 3 | Output 3 value |  | BOOLEAN | RW | 0 |
|  | 4 | Output 4 value |  | BOOLEAN | RW | 0 |
|  | 5 | Output 5 value |  | BOOLEAN | RW | 0 |
|  | 6 | Output 6 value |  | BOOLEAN | RW | 0 |
|  | 7 | Output 7 value |  | BOOLEAN | RW | 0 |
|  | 8 | Output 8 value |  | BOOLEAN | RW | 0 |

## Seneca Z-PC Line module: ZC-3A0

In this chapter are described the features of ZC-3AO module, based on CANOpen protocol.
NOTE: "0x" means an exadecimal number interpretation.

## CANOpen features

| TECHNICAL DATA |  |
| :--- | :--- |
| Baud rate | $20,50,125,250,500,800,1000 \mathrm{kbps}$ |
| Typ min to max output time | 20 ms for all 3 outputs |
| Channel range in voltage mode | From -10.5 V to +10.5 V |
| Channel range in current mode | From 0 to 20.5 mA |
| CANOpen TECHNICAL DATA |  |
| NMT | slave |
|  | Node guarding, heartbeat |
| Number of PDO | HW switch or software |
| PDO modes | 1 RX |
| PDO mapping | Event triggered, Sync (cyclic), Sync (acyclic) |
| PDO linking | Variable |
| Number of SDO | supported |
| Error message | 1 server |
| Supported application | yes |
| Layer | Cia 301 v4.02 |

## CANOpen TPDOs transmission type supported

| Object Value 0x180x Sub 2 | TRANSMISSION TYPE |
| :--- | :--- |
| 0 | Synchronous - acyclic |
| From 1 to 240 | Synchronous - cyclic |
| 255 | Asynchronous |

## CANOpen PDOs mapping

| OBJECTS FOR DEFAULT MAPPING |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PDO NR | COB-ID | MAPPED OBJECTS | INDEX | SUBINDEX |
| RPDO2 | $\begin{gathered} 0 \times 00000300 \\ + \\ \text { Nodeld } \end{gathered}$ | $\begin{gathered} \text { Output value } \mathrm{CH} 1 \\ \pm 10000 \end{gathered}$ | $0 \times 6411$ | 1 |
|  |  | $\begin{gathered} \text { Output value CH2 } \\ \pm 10000 \\ \hline \end{gathered}$ | 0x6411 | 2 |
|  |  | $\begin{gathered} \text { Output value CH3 } \\ \pm 10000 \end{gathered}$ | 0x6411 | 3 |

Note that TPDO COB-ID must start with $0 \times 4$.

## CANOpen emergency message

The Emergency message is composed by:
2 bytes of EEC (Emergency error code)
1 bytes of ER (Error register)
4 bytes MEF (Manufacturer error filled objects) (0x1002)

For EEC code 0xFF10, the emergency message is:

| EMERGENCY MESSAGE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 |  |  |  |
| $0 \times F F 10$ |  | $0 \times 81$ |  | MEF |  |  |

With this MEF:

| MEF (Manufacturer-specific Error Field) for EEC 0xFF10 |  |  |
| :---: | :---: | :---: |
| BIT | DESCRIPTION | OBJECT FOR ERROR DETAILS |
| 15 | Disability ch1 | $0 \times 2120$ subindex 1 |
| 14 | Disability ch2 | $0 \times 2120$ subindex 2 |
| 13 | Disability ch3 | $0 \times 2120$ subindex 3 |
| 12 | NA |  |
| 11 | Channel 1 saturation |  |
| 10 | Channel 2 saturation |  |
| 9 | Channel 3 saturation |  |
| 8 | NA | $0 \times 2121$ subindex 1 |
| 7 | Communication error |  |
| 6 | Channels global error |  |
| $5 . .0$ | NA |  |

For "voltage error", the emergency message is:

| EMERGENCY MESSAGE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 |  |  |
| $0 \times$ FF10 |  | 0x85 | Object 0x2100 |  |  |

For a "timeout command" or "error command", the emergency message is:

| EMERGENCY MESSAGE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 | BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 | BYTE 5 |
| $0 \times F F 11$ |  | $0 \times 81$ | Channel ID | Object 0x2103 subindex channelID |  |

Where the meaning of CHANNEL ID is:

| CHANNEL ID |  |
| :---: | :---: |
| CHANNEL ID | DESCRIPTION |
| $0 \times 01$ | Channel 1-2 |
| $0 \times 02$ | Channel 3-4 |
| $0 \times 03$ | Channel 5-6 |
| $0 \times 04$ | Channel 7-8 |

For "CPU ERROR" the Emergency message will be:

| EMERGENCY MESSAGE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 | BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 | BYTE 5 | BYTE 6 |
| 0xFF20 |  | 0x81 |  | Object 0x1002 |  |  |


| EEC |  |
| :--- | :--- |
| CODE | DESCRIPTION |
| $0 \times 0000$ | No error |
| $0 \times 1000$ | Generic error |
| $0 \times 4201$ | CPU temperature over T_HIGH_HIGH |
| $0 \times 4202$ | CPU temperature over T_HIGH |
| $0 \times 4203$ | CPU temperature under T_LOW |
| $0 \times 8110$ | Communication Can Overrun |
| $0 \times 8120$ | Error passive |
| $0 \times 8130$ | Life Guard error |
| $0 \times 8140$ | Recovered from bus off |
| $0 \times F F 10$ | General input channels error |
| $0 \times F F 11$ | Command for input channel error |
| $0 \times F F 20$ | CPU error |


| ER |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 |  |
| Generic | 0 | Voltage | temperature | communication | 0 | 0 | Manufacture |  |

Where bit equal to "0" means "no error".

Object 0x1002: manufacturer status register

Object $0 \times 1002$ is the CPU status.

| OBJECT 1002 |  |
| :---: | :--- |
| BIT | DESCRIPTION |
| $31 . .10$ | NA |
| 9 | Good data value |
| 8 | Precision data value |
| $7 . .1$ | NA |
| 0 | Flash CRC ERROR |

Object 0x1006: communication window lenght

| OBJECT 1006 |  |  |
| :---: | :---: | :---: |
| MIN VAL [ms] | MAX VAL [ms] |  |
| 10 | 10000 |  |

Object 0x1007: synchronous window lenght

| OBJECT 1007 |  |  |
| :---: | :---: | :---: |
| MIN VAL [ms] | MAX VAL [ms] |  |
| 2 | 2000 |  |

## CANOpen manufacturer specific profile

If dip-switches are in "from memory" mode, the node address is selectable by Object 0x2001.

## NODE ADDRESS (Object 0x2001)

## Object value

$0 . .127$

Description
Node address

If dip-switches are in "from memory" mode, the baud rate is selectable by Object 0x2002.

| BAUDRATE (Object 0x2002) |  |
| :---: | :--- |
| Object value | Description |
| 1 | $20 \mathrm{kbit} / \mathrm{s}$ |
| 2 | $50 \mathrm{kbit} / \mathrm{s}$ |
| 3 | $125 \mathrm{kbit} / \mathrm{s}$ |
| 4 | $250 \mathrm{kbit} / \mathrm{s}$ |
| 5 | $500 \mathrm{kbit} / \mathrm{s}$ |
| 6 | $800 \mathrm{kbit} / \mathrm{s}$ |
| 7 | $1 \mathrm{Mbit} / \mathrm{s}$ |

Object $0 \times 2030$ can be used to monitor the CPU temperature.

| CPU TEMPERATURE (Object 0x2030) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Actual temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ |
| 2 | Temperature for HOT STOP ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 95.0^{\circ} \mathrm{C}$ |
| 3 | Temperature for HOT ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 90.0^{\circ} \mathrm{C}$ |
| 4 | Temperature for COLD ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right]-25.0^{\circ} \mathrm{C}$ |

The HOT STOP temperature sends in pre-operational the station.
The HOT ERROR and the COLD ERROR temperature sends the Emergency Object.
The Object is Read Only.

Object $0 \times 2100$ contains the channel status:

| CHANNEL STATUS (Object 0x2100) |  |
| :---: | :--- |
| Command code | Description |
| 15 | Channel 1 disable |
| 14 | Channel 2 disable |
| 13 | Channel 3 disable |
| 12 | NA |
| 11 | Channel 1 saturation |
| 10 | Channel 2 saturation |
| 9 | Channel 3 saturation |
| 8 | NA |
| 7 | Channels communication error |
| 6 | Channels fail |
| $5 . .0$ | NA |

Object $0 \times 2106$ contains the channel configuration:

| CHANNEL CONFIGURATION (Object 0x2106) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 enable ( $0=$ disable, $1=$ enable) |
| 2 | Channel 2 enable (0=disable, $1=$ enable $)$ |
| 3 | Channel 3 enable ( $0=$ disable, $1=$ enable $)$ |
| 4 | Channel 1 mode ( $0=$ voltage, $1=$ current $)$ |
| 5 | Channel 2 mode ( $0=$ voltage, $1=$ current $)$ |
| 6 | Channel 3 mode ( $0=$ voltage, $1=$ current $)$ |
| 7 | Channel 1 fault action ( $0=$ last good, $1=$ load preset $)$ |
| 8 | Channel 2 fault action (0=last good, $1=$ load preset $)$ |
| 9 | Channel 3 fault action ( $0=$ last good, $1=$ load preset $)$ |

## Integer scale process

Integer input objects can be scaled by a BEGIN (referred to 0 mV or $0 \mu \mathrm{~A}$ ) for a 0 integer value and a END (referred to 10000 mV or $20000 \mu \mathrm{~A}$ ) for a 10000 integer value.

The formula is: Out=BGN + ((END-BGN)/10000)*VAL

## Begin for integer scale

The object sets the customization of the associated mV or $\mu \mathrm{A}$ output value to the 0 integer value.

| $\mathbf{0 x 2 6 0 0}$ |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Begin value for channel 1 $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 2 | Begin value for channel 2 mV$]$ or $[\mu \mathrm{A}]$ |
| 3 | Begin value for channel 3 $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |

## End for integer scale

The object sets the customization of the associated mV or $\mu \mathrm{A}$ output value to the 10000 integer value.

| $\mathbf{0 x 2 6 0 1}$ |  |
| :---: | :--- |
| Subindex | Description |
| 1 | End value for channel 1 $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 2 | End value for channel 2 $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 3 | End value for channel 3 $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |

## DIP-SWITCH configuration

| BAUD-RATE (Dip-Switches: SW1) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | Meaning |  |  |  |  |
|  |  |  | Only Baud-Rate is acquired from memory(EEPROM) |  |  |  |  |
|  |  | $\bullet$ | 20 kbps |  |  |  |  |
|  | $\bullet$ |  | 50 kbps |  |  |  |  |
|  | $\bullet$ | $\bullet$ | 125 kbps |  |  |  |  |
| $\bullet$ |  |  | 250 kbps |  |  |  |  |
| $\bullet$ |  | $\bullet$ | 500 kbps |  |  |  |  |
| $\bullet$ | $\bullet$ |  | 800 kbps |  |  |  |  |
| $\bullet$ | $\bullet$ | $\bullet$ | 1 Mbps |  |  |  |  |
| ADDRESS (Dip-Switches: SW1) |  |  |  |  |  |  |  |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 | Meaning |
|  |  |  |  |  |  |  | Only address is acquired from memory(EEPROM) |
|  |  |  |  |  |  | $\bullet$ | Address=1 |
|  |  |  |  |  | $\bullet$ |  | Address=2 |
|  |  |  |  |  | $\bullet$ | - | Address=3 |
|  |  |  |  | $\bullet$ |  |  | Address=4 |
|  |  |  |  | $\bullet$ |  | $\bullet$ | Address=5 |
| X | X | X | X | X | X | X | .............................. |
| $\bullet$ | Address=127 |

## CANOpen LED description

| SERVICE (DIAGNOSTIC) LED DESCRIPTION |  |  |
| :--- | :--- | :--- |
| LED | LED status | Meaning |
| RUN | Blinking light | Pre-operational mode |
|  | Single flash | Stop mode |
|  | ON | Operational mode |
| ERROR | Single flash | At least one error counter has reached or exceed the warning <br> level |
|  | Double flash | Guard event |
|  | Triple flash | The SYNC has not received within the configurated <br> communication cycle timeout period |
|  | ON | The CAN controller is bus off |
|  | OFF | No error |
| FAIL | Blinking | Data receiving from RS232 |
|  | ON | At least one channel is in error mode |
| POWER | ON | Power supply |

## Object for analog data

Object $0 \times 6411$ contains the $\pm 10000$ values for channel $1 . .3$ (in agreement with objects $0 \times 2600$, $0 \times 2601$ and $0 \times 2106$ ) ( $\pm 10000$ for voltage mode, $0 . .10000$ for current mode).

| OUTPUT VALUE (Object $\mathbf{0 x 6 4 1 1 )}$ |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel $1 \pm 10000$ output value |
| 2 | Channel $2 \pm 10000$ output value |
| 3 | Channel $3 \pm 10000$ output value |

Object $0 \times 6443$ contains the fault mode for outputs.
If $F A U L T$ MODE=0 Hold last value
If FAULT MODE=1 Load object $0 \times 6444$ value

| FAULT OUTPUT MODE (Object 0x6443) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 fault mode |
| 2 | Channel 2 fault mode |
| 3 | Channel 3 fault mode |

Object $0 \times 6444$ contains the $\pm 10000$ values for channels $1 . .3$ to load in case of fault $( \pm 10000$ for voltage mode, $0 . .10000$ for current mode).

| FAULT OUTPUT VALUE (Object 0x6444) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 fault output value |
| 2 | Channel 2 fault output value |
| 3 | Channel 3 fault output value |

CANOpen functional diagram
counter mode ON (subindex 1 Object 0x6003="0")


## CANOpen Object dictionary

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| 0x1000 | 0 | Device type | Profile 401=0x191 | UNSIGNED 32 | RO | 0x00080191 |
| 0x1001 | 0 | Error register | Error register (DS401) | UNSIGNED 8 | RO | 0 |
| 0x1002 | 0 | Manufacturer Status register | Status register | UNSIGNED 32 | RO | 0 |
| 0x1005 | 0 | SYNC COB-ID | The device consumes the SYNC message | UNSIGNED 32 | RW | 0x00000080 |
| 0x1006 | 0 | Comm. window lenght | Sync interval [us] | UNSIGNED 32 | RW | 0 |
| 0x1007 | 0 | Synchronous window lenght | The window [us] for the PDO transmission after the SYNC | UNSIGNED 32 | RW | 0 |
| 0x1008 | 0 | Manufacturer Device name | Device name | VISIBLE STRING | RO | "ZC-3AO" |
| 0x1009 | 0 | Manufacturer HW version | Hardware version | VISIBLE STRING | RO | "SC000000" |
| 0x100A | 0 | Manufacturer SW version | Software version | VISIBLE STRING | RO | "SW001150" |
| 0x100C | 0 | Guard Time | [ms] | UNSIGNED 16 | RW | 0 |
| 0x100D | 0 | Life time factor | Max delay between two guarding telegrams= Guard_Time. Life_Time_Factor | UNSIGNED 8 | RW | 0 |
| 0x1010 | 0 | Store parameters/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 5 |
|  | 1 | Save all parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 2 | Save communication parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 3 | Save application parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 4 | Save manufacturer parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |


|  | 5 | Save slave parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x1011 | 0 | Restore default/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 5 |
|  | 1 | Restore all parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
|  | 2 | Restore communication parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
|  | 3 | Restore application parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
|  | 4 | Restore Manufacturer parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
|  | 5 | Restore slave parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
| 0x1014 | 0 | $\begin{aligned} & \hline \text { COB-ID } \\ & \text { emergency } \\ & \text { Object } \end{aligned}$ |  | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 80 \end{gathered}$ |
| $0 \times 1017$ | 0 | Heartbeat producer time | Time (ms) $0 \times 0000=$ there is not heartbeat service | UNSIGNED 16 | RW | 0 |
| 0x1018 | 0 | Identity object/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 4 |
|  | 1 | Vendor ID | Seneca srl | UNSIGNED 32 | RO | 0x00000249 |
|  | 2 | Product code | ZC-3AO Machine ID Code | UNSIGNED 32 | RO | 0x0000001E |
|  | 3 | Revision number |  | UNSIGNED 32 | RO | 0 |
|  | 4 | Serial number |  | UNSIGNED 32 | RO | 0 |
| 0x1200 | 0 | $\begin{aligned} & 1^{\text {st }} \text { SDO port/ } \\ & \text { number of } \\ & \text { mapped object } \\ & \hline \end{aligned}$ | Max subindex number | UNSIGNED 8 | RO | 2 |
|  | 1 | $\begin{aligned} & \text { COB-ID SDO } \\ & \text { Client-> Server } \end{aligned}$ | COB-ID of receive SDO | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 600 \\ \hline \end{gathered}$ |
|  | 2 | $\begin{aligned} & \text { COB-ID SDO } \\ & \text { Server-> Client } \end{aligned}$ | COB-ID of transmit SDO | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 580 \end{gathered}$ |


| $0 \times 1400$ | 0 | $1^{\text {st }}$ receive PDO parameter/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | $\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$ | COB-ID of TxPDO1 | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 200 \end{gathered}$ |
|  | 2 | Transmission type |  | UNSIGNED 8 | RO | 255 |
| 0x1401 | 0 | 2nd receive PDO parameters /number of mapped object | Max subindex number | UNSIGNED 8 | RO | 3 |
|  | 1 | COB-ID used by PDO |  | UNSIGNED 32 | RW | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 300 \\ \hline \end{gathered}$ |
|  | 2 | Transmission type | ```Transmission type forTxPDO2 0x00=synchronous- acyclic 0x01 to 0xF0 =synchronous- cyclic 0xFF=asynchronous``` | UNSIGNED 8 | RW | 0xFF |
|  | 3 | Inhibit time |  | UNSIGNED 16 | R RW | 0x00 |
| 0x1600 | 0 | $\begin{aligned} & 1^{\text {st }} \text { receive PDO } \\ & \text { mapping } \\ & \text { parameter/ } \\ & \text { number of } \\ & \text { mapped object } \\ & \hline \end{aligned}$ | Max subindex number | UNSIGNED 8 | RO | 0 |
| 0×1601 | 0 | $2^{\text {nd }}$ receive PDO mapping parameter | Max subindex number | UNSIGNED 8 | RW | 3 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: channel 1, $\pm 10000$ output) | UNSIGNED 32 | R RW | $\begin{gathered} \hline \text { 0x64110110 } \\ \text { Object=0x6411 } \\ \text { Subindex=1 } \\ \text { Length }=16 \text { bit } \\ \hline \end{gathered}$ |
|  | 2 | 2nd object to be mapped | Second object (default: channel $2, \pm 10000$ output) | UNSIGNED 32 | RW | $\begin{gathered} \text { Ox64110210 } \\ \text { Object }=0 \times 6411 \\ \text { Subindex=2 } \\ \text { Length }=16 \mathrm{bit} \end{gathered}$ |
|  | 3 | 3rd object to be mapped | Third object (default: channel 3, $\pm 10000$ output) | UNSIGNED 32 | RW | $\begin{gathered} \text { 0x64110310 } \\ \text { Object }=0 \times 6411 \\ \text { Subindex=3 } \\ \text { Length }=16 \text { bit } \end{gathered}$ |
|  |  |  |  |  |  |  |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| $0 \times 2001$ | 0 | Module address | Station address (only if dip switch $4,5,6,7,8,9,10$ are OFF) | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 7 \mathrm{~F}=127$ |
| 0x2002 | 0 | Baudrate | Station Baudrate (only if dip switch 1,2,3 are OFF) <br> 1=20kbps <br> 2=50kbps <br> $3=125 \mathrm{kbps}$ <br> $4=250 \mathrm{kbps}$ <br> $5=500 \mathrm{kbps}$ <br> $6=800 \mathrm{kbps}$ <br> $7=1 \mathrm{Mbps}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 01$ |


| 0x2003 | 0 | Master firmware code |  | $\begin{gathered} \hline \hline \text { UNSIGNED } \\ 16 \\ \hline \end{gathered}$ | RO | 1152 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 \times 2030$ | 0 | Device temperature/ number of parameters | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | Internal temperature | Station internal temperature [ ${ }^{\circ} \mathrm{C} / 10$ ] | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RO | 0 |
|  | 2 | Hi Hi temperature | Critical hot temperature (all operations stop) [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO | 950 |
|  | 3 | Hi temperature | Warning for too hot temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ | INTEGER 16 | RO | 900 |
|  | 4 | Low temperature | Critical Iow temperature (all operations stop) [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO | -250 |
| 0x2106 | 0 | Channel configuration/ number of parameters | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 6 |
|  | 1 | Channel 1 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 2 | Channel 2 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 3 | Channel 3 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 1 |
|  | 4 | Channel 1 mode | $\begin{aligned} & 0=\text { voltage } \\ & 1=\text { current } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 5 | Channel 2 mode | $\begin{aligned} & 0=\text { voltage } \\ & 1=\text { current } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 6 | Channel 3 mode | $\begin{aligned} & 0=\text { voltage } \\ & 1=\text { current } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0 |
| $0 \times 2600$ | 0 | Begin integer scale/ number of parameters | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 3 |
|  | 1 | Begin scale CH1 | Begin scale [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 2 | Begin scale CH2 | Begin scale [mV] or $[\mu \mathrm{A}]$ | $\begin{gathered} \text { INTEGER } \\ 16 \\ \hline \end{gathered}$ | RW | 0 |
|  | 3 | Begin scale CH3 | Begin scale [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
| 0x2601 | 0 | End integer scale | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 3 |
|  | 1 | End scale CH1 | End scale [mV] or $[\mu \mathrm{A}]$ | $\begin{gathered} \hline \text { INTEGER } \\ 16 \\ \hline \end{gathered}$ | RW | 10000 |
|  | 2 | End scale CH2 | End scale [mV] or $[\mu \mathrm{A}]$ | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 10000 |
|  | 3 | End scale CH3 | End scale [mV] or $[\mu \mathrm{A}]$ | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 10000 |


|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| $0 \times 6411$ | 0 | $\begin{aligned} & \pm 10000 \\ & \text { Output/ } \\ & \text { number of } \\ & \text { output } \end{aligned}$ | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 3 |
|  | 1 | Output 1h | Channel 1 value $\pm 10000$ (from 0 to 10000 for current) | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 2 | Output 2h | Channel 2 value $\pm 10000$ (from 0 to 10000 for current) | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 3 | Output 3h | Channel 3 value $\pm 10000$ (from 0 to 10000 for current) | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
| 0x6443 | 0 | Error mode output/ number of output | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 3 |
|  | 1 | Error mode output 1 | $\begin{aligned} & 0=\text { keep last } \\ & 1=\text { load object } 0 \times 6444 \\ & \hline \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0 |
|  | 2 | Error mode output 2 | $\begin{aligned} & \hline 0=\text { keep last } \\ & 1=\text { load object } \\ & 0 \times 6444 \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 3 | Error mode output 3 | $\begin{aligned} & 0=\text { keep last } \\ & 1=\text { load object } 0 \times 6444 \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0 |
| 0x6444 | 0 | Error value output/ number of error value | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 3 |
|  | 1 | Error value output 1 | Channel 1 integer analogue interrupt upper limit value [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 2 | Error value output 2 | Channel 2 integer analogue interrupt upper limit value [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 3 | Error value output 3 | Channel 3 integer analogue interrupt upper limit value [ mV ] or $[\mu \mathrm{A}]$ | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |

## Seneca Z-PC Line module: ZC-4RTD

In this chapter are described the features of ZC-4RTD module, based on CANOpen protocol.
NOTE: "0x" means an exadecimal number interpretation.

## CANOpen features

| TECHNICAL DATA |  |
| :--- | :--- |
| Baud rate | $20,50,125,250,500,800,1000 \mathrm{kbps}$ |
| Typical conversion time | 20 ms for 4 channels |
| RTD supported | PT100, NI100, PT500, PT1000 |
| Range in Ohm-meter mode | From $18 \Omega$ to $1851 \Omega$ |
| CANOpen TECHNICAL DATA |  |
| NMT | Slave |
|  | Node guarding, heartbeat |
| Number of PDO | HW switch or software |
| PDO modes | 2 TX |
| PDO mapping | Event triggered, Sync (cyclic), Sync (acyclic) |
| PDO linking | Variable |
| Number of SDO | supported |
| Error message | 1 server |
| Supported application | yes |
| Layer | Cia 301 v4.02 |

## Supported RTD

| PT100 - EN60751/A2 (ITS-90) |  | PT1000 - EN60751/A2 (ITS-90) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Temperature range | $-200^{\circ} \mathrm{C} . .+600^{\circ} \mathrm{C}$ | Temperature range | $-200^{\circ} \mathrm{C} . .+210^{\circ} \mathrm{C}$ |  |
| PT500 - EN60751/A2 (ITS-90) |  |  | N100 |  |
| Temperature range |  | $-200^{\circ} \mathrm{C} . .+750^{\circ} \mathrm{C}$ | Temperature range |  |

## CANOpen TPDOs transmission type supported

| Object Value 0x180x Sub 2 | TRANSMISSION TYPE |
| :--- | :--- |
| 0 | Synchronous - acyclic |
| From 1 to 240 | Synchronous - cyclic |
| 255 | Asynchronous |

## CANOpen PDOs mapping

| OBJECTS FOR DEFAULT MAPPING |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PDO NR | COB-ID | MAPPED OBJECTS | INDEX | SUBINDEX |
| TPDO2 | $\begin{gathered} \text { 0x40000280 } \\ + \\ \text { Nodeld } \end{gathered}$ | $\begin{gathered} \text { Value } \mathrm{CH} 1 \\ 16 \text { bit } \end{gathered}$ | $0 \times 6401$ | 1 |
|  |  | $\begin{gathered} \text { Value } \mathrm{CH} 2 \\ 16 \text { bit } \end{gathered}$ | 0x6401 | 2 |
|  |  | $\begin{gathered} \text { Value } \mathrm{CH} 3 \\ 16 \text { bit } \end{gathered}$ | 0x6401 | 3 |
|  |  | $\begin{gathered} \text { Value } \mathrm{CH} 4 \\ 16 \text { bit } \end{gathered}$ | 0x6401 | 4 |
| TPDO3 | $\begin{gathered} 0 \times 40000380 \\ + \\ \text { Nodeld } \end{gathered}$ | $\begin{aligned} & \text { Value } \mathrm{CH} 1 \\ & \text { float } \end{aligned}$ | 0x6403 | 1 |
|  |  | Value CH2 float | 0x6403 | 2 |
|  |  | $\text { Value } \mathrm{CH} 3$ <br> float | 0x6403 | 3 |
|  |  | $\begin{aligned} & \text { Value } \mathrm{CH} 4 \\ & \text { float } \end{aligned}$ | 0x6403 | 4 |

Note that TPDO COB-ID must start with 0x4.

## CANOpen emergency message

The Emergency message is composed by:
2 bytes of EEC (Emergency error code)
1 bytes of ER (Error register)
Max of 5 bytes of MEF (Manufacturer error filled)

For EEC code 0xFF10, the emergency message is:

| EMERGENCY MESSAGE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 |  |  |  |
| $0 \times F F 10$ |  | $0 \times 81$ |  | MEF |  |  |

With this MEF:

| MEF (Manufacturer-specific Error Field) for EEC 0xFF10 |  |  |
| :---: | :---: | :---: |
| BIT | DESCRIPTION | OBJECT FOR ERROR DETAILS |
| 15 | Channel 1 fail | $0 \times 2120$ subindex 1 |
| 14 | Channel 2 fail | $0 \times 2120$ subindex 2 |
| 13 | Channel 3 fail | $0 \times 2120$ subindex 3 |
| 12 | Channel 4 fail | $0 \times 2120$ subindex 4 |
| 11 | Channel 1 sensor error | $0 \times 2120$ subindex 1 |
| 10 | Channel 2 sensor error | $0 \times 2120$ subindex 2 |
| 9 | Channel 3 sensor error | $0 \times 2120$ subindex 3 |
| 8 | Channel 4 sensor error | $0 \times 2120$ subindex 4 |
| 7 | Channel 1 communication fail | $0 \times 2121$ subindex 1 |
| 6 | Channel 2 communication fail | $0 \times 2121$ subindex 2 |
| 5 | Channel 3 communication fail | $0 \times 2121$ subindex 3 |
| 4 | Channel 4 communication fail | $0 \times 2121$ subindex 4 |

For "voltage error", the emergency message is:

| EMERGENCY MESSAGE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 | BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 |  |
| $0 \times F F 10$ |  | $0 \times 85$ | Object 0x2100 |  |  |

For a "timeout command" or "error command", the emergency message is:

| EMERGENCY MESSAGE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 | BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 | BYTE 5 |
| $0 \times F F 11$ |  | $0 \times 81$ | Channel NR | Object 0x2103 subindex channelID |  |

For "CPU ERROR" the Emergency message will be:

| EMERGENCY MESSAGE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 | BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 | BYTE 5 | BYTE 6 |  |
| $0 \times F F 20$ |  | $0 \times 81$ |  | Object 0x1002 |  |  |  |


| EEC |  |
| :--- | :--- |
| CODE | No error |
| $0 \times 0000$ | Generic error |
| $0 \times 1000$ | CPU temperature over HOT STOP ERROR |
| $0 \times 4201$ | CPU temperature over HOT STOP |
| $0 \times 4202$ | CPU temperature under COLD ERROR |
| $0 \times 4203$ | Communication Can Overrun |
| $0 \times 8110$ | Error passive |
| $0 \times 8120$ | Life Guard error |
| $0 \times 8130$ | Recovered from bus off |
| $0 \times 8140$ | General input channels error |
| $0 \times F F 10$ | Command for input channel error |
| $0 \times F F 11$ | CPU error |
| $0 \times F F 20$ |  |


| ER |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 |
| Generic | 0 | Voltage | temperature | communication | 0 | 0 | Manufacture |

Where bit equal to " 0 " means "no error".

Object 0x1002: manufacturer status register

Object $0 \times 1002$ is the CPU status.

| OBJECT 1002 |  |
| :---: | :---: |
| BIT | DESCRIPTION |
| $31 . .10$ | NA |
| 9 | Good data value |
| 8 | Precision data value |
| $7 . .1$ | NA |
| 0 | Flash CRC ERROR |

Object $0 \times 1006$ : communication window lenght

| OBJECT 1006 |  |
| :---: | :---: |
| MIN VAL [ms] | MAX VAL [ms] |
| 10 | 10000 |

Object 0x1007: synchronous window lenght

| OBJECT 1007 |  |  |
| :---: | :---: | :---: |
| MIN VAL [ms] | MAX VAL [ms] |  |
| 2 | 2000 |  |

## CANOpen manufacturer specific profile

If dip-switches are in "from memory" mode, the node address is selectable by Object 0x2001.

| NODE ADDRESS (Object 0x2001) |  |
| :---: | :--- |
| Object value | Description |
| $0 . .127$ | Node address |

If dip-switches are in "from memory" mode, the baud rate is selectable by Object 0x2002.

| BAUDRATE (Object 0x2002) |  |
| :---: | :--- |
| Object value | Description |
| 1 | $20 \mathrm{kbit} / \mathrm{s}$ |
| 2 | $50 \mathrm{kbit} / \mathrm{s}$ |
| 3 | $125 \mathrm{kbit} / \mathrm{s}$ |
| 4 | $250 \mathrm{kbit} / \mathrm{s}$ |
| 5 | $500 \mathrm{kbit} / \mathrm{s}$ |
| 6 | $800 \mathrm{kbit} / \mathrm{s}$ |
| 7 | $1 \mathrm{Mbit} / \mathrm{s}$ |

Object $0 \times 2030$ can be used to monitor the CPU temperature.

| CPU TEMPERATURE (Object 0x2030) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Actual temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ |
| 2 | Temperature for HOT STOP ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 95.0^{\circ} \mathrm{C}$ |
| 3 | Temperature for HOT ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 90.0^{\circ} \mathrm{C}$ |
| 4 | Temperature for COLD ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right]-25.0^{\circ} \mathrm{C}$ |

The HOT STOP temperature sends in pre-operational the station.
The HOT ERROR and the COLD ERROR temperature sends the Emergency Object.
The Object is Read Only.

Object $0 \times 2100$ contains the channel status:

| CHANNEL STATUS (Object 0x2100) |  |  |
| :---: | :--- | :--- |
| BIT | Description | Object for error details |
| 15 | Channel 1 fail | $0 \times 2120$ subindex 1 |
| 14 | Channel 2 fail | $0 \times 2120$ subindex 2 |
| 13 | Channel 3 fail | $0 \times 2120$ subindex 3 |
| 12 | Channel 4 fail | $0 \times 2120$ subindex 4 |
| 11 | Channel 1 sensor error | $0 \times 2120$ subindex 1 |
| 10 | Channel 2 sensor error | $0 \times 2120$ subindex 2 |
| 9 | Channel 3 sensor error | $0 \times 2120$ subindex 3 |
| 8 | Channel 4 sensor error | $0 \times 2120$ subindex 4 |
| 7 | Channel 1 communication fail | $0 \times 2121$ subindex 1 |
| 6 | Channel 2 communication fail | $0 \times 2121$ subindex 2 |
| 5 | Channel 3 communication fail | $0 \times 2121$ subindex 3 |
| 4 | Channel 4 communication fail | $0 \times 2121$ subindex 4 |
| $3 . .0$ | NA | NA |

Object $0 \times 2106,0 \times 2107,0 \times 2108,0 \times 2109$ contain the channels configuration:

| CHANNELS SETUP (Object 0x2106 $\mathbf{- 0 \times 2 1 0 7}-\mathbf{0 x 2 1 0 8} \mathbf{- 0 \times 2 1 0 9 )}$ |  |
| :--- | :--- |
| Subindex | Description |
| 1 | RTD sensor type |
|  | $0=\mathrm{PT} 100$ |
|  | $1=\mathrm{NI} 100$ |
|  | $2=\mathrm{PT} 500$ |
|  | $3=\mathrm{PT} 1000$ |
| 2 | Measure type $\left(0={ }^{\circ} \mathrm{C}, 1=\Omega\right)$ |
|  | Three wires connection |
|  | $0=$ two or four wires connection |
|  | $1=$ three wires connection |
| 3 | Frequency rejection $(1=60 \mathrm{~Hz}, 0=50 \mathrm{~Hz})$ |
|  | Filter value |
| 4 | Channel enable |
|  | $0=$ channel disabled |
|  | $1=$ channel enabled |
| 6 |  |


| FILTER VALUES |  |
| :---: | :--- |
| Value | Filter type |
| 0 | Disabled |
| 1 | Average filter |
| 2 | Hires + average filter |
| 3 | Hires + average + exponential (level 1) filter |
| $\ldots$ | $\ldots$ |
| 7 | Hires + average + exponential (level 5) filter |

## Object 0x2125 - FAULT ACTIONS

Object $0 \times 2125$ sets the fault actions.

| FAULT ACTIONS (Object 0x2125) |  |
| :---: | :--- |
| BIT | Description |
| 15 | Fault action $\mathrm{CH} 10=$ load 0x2160, 1=last good |
| 14 | Fault action CH 2 0=load 0x2160, 1=last good |
| 13 | Fault action $\mathrm{CH} 30=$ load 0x2160, 1=last good |
| 12 | Fault action $\mathrm{CH} 40=$ load 0x2160, 1=last good |

## Object 0x2160 - FAULT VALUES

Object $0 \times 2160$ contains the floating point value (32 bit) to load in fault case.
The measure unit can be: ${ }^{\circ} \mathrm{C}$ or $\Omega$.

| $\mathbf{0 x 2 1 6 0}$ |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 fault value |
| 2 | Channel 2 fault value |
| 3 | Channel 3 fault value |
| 4 | Channel 4 fault value |

## DIP-SWITCH configuration

| BAUD-RATE (Dip-Switches: SW1) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | Meaning |  |  |  |  |
|  |  |  | Only Baud-Rate is acquired from memory(EEPROM) |  |  |  |  |
|  |  | $\bullet$ | 20 kbps |  |  |  |  |
|  | $\bullet$ |  | 50 kbps |  |  |  |  |
|  | $\bullet$ | $\bullet$ | 125 kbps |  |  |  |  |
| $\bullet$ |  |  | 250 kbps |  |  |  |  |
| $\bullet$ |  | $\bullet$ | 500 kbps |  |  |  |  |
| $\bullet$ | $\bullet$ |  | 800 kbps |  |  |  |  |
| $\bullet$ | $\bullet$ | $\bullet$ | 1 Mbps |  |  |  |  |
| ADDRESS (Dip-Switches: SW1) |  |  |  |  |  |  |  |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 | Meaning |
|  |  |  |  |  |  |  | Only address is acquired from memory(EEPROM) |
|  |  |  |  |  |  | - | Address=1 |
|  |  |  |  |  | $\bullet$ |  | Address=2 |
|  |  |  |  |  | $\bullet$ | - | Address=3 |
|  |  |  |  | $\bullet$ |  |  | Address=4 |
|  |  |  |  | $\bullet$ |  | $\bullet$ | Address=5 |
| X | X | X | X | X | X | X | ............................. |
| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet \bullet$ | $\bullet$ | $\bullet$ | Address=127 |

## CANOpen LED description

| SERVICE (DIAGNOSTIC) LED DESCRIPTION |  |  |
| :---: | :---: | :---: |
| LED | LED status | Meaning |
| RUN | Blinking light | Pre-operational mode |
|  | Single flash | Stop mode |
|  | ON | Operational mode |
| ERROR | Single flash | At least one error counter has reached or exceed the warning level |
|  | Double flash | Guard event |
|  | Triple flash | The SYNC has not received within the configurated communication cycle timeout period |
|  | ON | The CAN controller is bus off |
|  | OFF | No error |
| FAIL | Blinking | Data receiving from RS232 |
|  | ON | At least one channel is in error mode |
| POWER | ON | Power supply |

## Object for analog data

Object $0 x 6401$ contains the 16 bit (signed) values for channels $1 . .4$ in [ $\left.{ }^{\circ} \mathrm{C} / 10\right],[\Omega / 10],[\Omega / 100]$.

| 16 BIT INTEGER INPUT (Object $\mathbf{0 x 6 4 1 1 )}$ |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 116 bit input value |
| 2 | Channel 216 bit input value |
| 3 | Channel 316 bit input value |
| 4 | Channel 416 bit input value |

Object $0 \times 6403$ contains the floating point (32 bit) values for channel $1 . .4$ in $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\Omega]$.

| 32 BIT REAL INPUT (Object 0x6403) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 floating point value |
| 2 | Channel 2 floating point value |
| 3 | Channel 3 floating point value |
| 4 | Channel 4 floating point value |

Object 0x6423 interrupt enable:
If the value is " 1 ", the station can generate asynchronous TxPDO.
If the value is " 0 ", the station can not generate asynchronous TxPDO.

## Object 0x6424 interrupt upper limit integer

If enabled (see object 0x6423), an interrupt is triggered when the analogue input is equal or rises above the given value.

As long as the trigger condition is met, every change of the analogue input data generates a new interrupt.

| INTERRUPT UPPER LIMIT 16 BIT INTEGER (OBJECT 0X6424) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 upper limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right],[\Omega / 10],[\Omega / 100]$ |
| 2 | Channel 2 upper limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right],[\Omega / 10],[\Omega / 100]$ |
| 3 | Channel 3 upper limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right],[\Omega / 10],[\Omega / 100]$ |
| 4 | Channel 4 upper limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right],[\Omega / 10],[\Omega / 100]$ |

## Object 0x6425 interrupt lower limit integer

If enabled (see object $0 \times 6423$ ), an interrupt is triggered when the analogue input falls below the given value.

As long as the trigger condition is met, every change of the analogue input data generates a new interrupt.

| INTERRUPT LOWER LIMIT 16 BIT INTEGER (OBJECT 0X6425) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 lower limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right],[\Omega / 10],[\Omega / 100]$ |
| 2 | Channel 2 lower limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right],[\Omega / 10],[\Omega / 100]$ |
| 3 | Channel 3 lower limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right],[\Omega / 10],[\Omega / 100]$ |
| 4 | Channel 4 lower limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right],[\Omega / 10],[\Omega / 100]$ |

## Object 0x6426 interrupt delta unsigned

The object sets the delta value (rising or falling above or below the last communicated value) for interrupt-enabled analogue inputs (if object 0x6423 enables the interrupt).

| INTERRUPT DELTA UNSIGNED INTEGER 16 BIT (OBJECT 0X6426) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 delta unsigned $\left[{ }^{\circ} \mathrm{C} / 10\right],[\Omega / 10],[\Omega / 100]$ |
| 2 | Channel 2 delta unsigned $\left[{ }^{\circ} \mathrm{C} / 10\right],[\Omega / 10],[\Omega / 100]$ |
| 3 | Channel 3 delta unsigned $\left[{ }^{\circ} \mathrm{C} / 10\right],[\Omega / 10],[\Omega / 100]$ |
| 4 | Channel 4 delta unsigned $\left[{ }^{\circ} \mathrm{C} / 10\right],[\Omega / 10],[\Omega / 100]$ |

## Object 0x6429 interrupt upper limit float

This object sets the converted upper limits for interrupt-enabled analogue inputs (see 0x6423 object). As long as the trigger condition is met, every change of the analogue input data generates a new interrupt.

| INTERRUPT UPPER LIMIT FLOAT (OBJECT 0X6429) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 upper limit float $\left[{ }^{\circ} \mathrm{C}\right],[\Omega]$ |
| 2 | Channel 2 upper limit float $\left[{ }^{\circ} \mathrm{C}\right],[\Omega]$ |
| 3 | Channel 3 upper limit float $\left[{ }^{\circ} \mathrm{C}\right],[\Omega]$ |
| 4 | Channel 4 upper limit float $\left[{ }^{\circ} \mathrm{C}\right],[\Omega]$ |

## Object 0x642A interrupt lower limit float

This object sets the lower limits for interrupt-enabled analogue inputs (see $0 \times 6423$ object). As long as the trigger condition is met, every change of the analogue input data generates a new interrupt.

| INTERRUPT LOWER LIMIT FLOAT (OBJECT OX6425) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 lower limit float $\left[{ }^{\circ} \mathrm{C}\right],[\Omega]$ |
| 2 | Channel 2 lower limit float $\left[{ }^{\circ} \mathrm{C}\right],[\Omega]$ |
| 3 | Channel 3 lower limit float $\left[{ }^{\circ} \mathrm{C}\right],[\Omega]$ |
| 4 | Channel 4 lower limit float $\left[{ }^{\circ} \mathrm{C}\right],[\Omega]$ |

## Object 0x642B interrupt delta float

The object sets the delta value (rising or falling above or below the last sample) in float format for interrupt-enabled analogue inputs (if object $0 \times 6423$ enables the interrupt).

| INTERRUPT DELTA UNSIGNED FLOAT (OBJECT OX6426) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 delta float $\left[{ }^{\circ} \mathrm{C}\right],[\Omega]$ |
| 2 | Channel 2 delta float $\left[{ }^{\circ} \mathrm{C}\right],[\Omega]$ |
| 3 | Channel 3 delta float $\left[{ }^{\circ} \mathrm{C}\right],[\Omega]$ |
| 4 | Channel 4 delta float $\left[{ }^{\circ} \mathrm{C}\right],[\Omega]$ |

## CANOpen functional diagram

For integer values


## CANOpen Object dictionary

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| 0x1000 | 0 | Device type | Profile 401=0×191 | UNSIGNED 32 | RO | 0x00040191 |
| $0 \times 1001$ | 0 | Error register | Error register (DS401) | UNSIGNED 8 | RO | 0 |
| 0x1002 | 0 | Manufacturer Status register | Status register | UNSIGNED 32 | RO | 0 |
| 0x1005 | 0 | SYNC COB-ID | The device consumes the SYNC message | UNSIGNED 32 | RW | 0x00000080 |
| 0x1006 | 0 | Comm. window lenght | Sync interval [us] | UNSIGNED 32 | RW | 0 |
| 0x1007 | 0 | Synchronous window lenght | The window [us] for the PDO transmission after the SYNC | UNSIGNED 32 | RW | 0 |
| 0x1008 | 0 | Manufacturer Device name | Device name | VISIBLE STRING | RO | "ZC-4RTD" |
| 0x1009 | 0 | Manufacturer HW version | Hardware version | VISIBLE STRING | RO | "SC000000" |
| 0x100A | 0 | Manufacturer SW version | Software version | VISIBLE STRING | RO | "SW001120" |
| 0x100C | 0 | Guard Time | [ms] | UNSIGNED 16 | RW | 0 |
| 0x100D | 0 | Life time factor | Max delay between two guarding telegrams= Guard_Time . Life_Time_Factor | UNSIGNED 8 | RW | 0 |
| $0 \times 1010$ | 0 | Store parameters/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 8 |
|  | 1 | Save all parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 2 | Save communication parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 3 | Save application parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 4 | Save manufacturer parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 5 | Save CH1 parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |


|  | 6 | Save CH2 <br> parameters | Store not volatile <br> parameters (write in <br> ASCII "save" for store <br> process MSB <br> 0x65766173 LSB) | UNSIGNED 32 | RW |
| :---: | :--- | :--- | :--- | :--- | :--- |


| 0x1014 | 0 | $\begin{aligned} & \hline \hline \text { COB-ID } \\ & \text { emergency } \\ & \text { Object } \\ & \hline \end{aligned}$ |  | UNSIGNED 32 | RO | $\begin{gathered} \hline \hline \text { \$NODEID+ } \\ 0 \times 80 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x1017 | 0 | Heartbeat producer time | Time (ms) $0 \times 0000=$ there is not heartbeat service | UNSIGNED 16 | RW | 0 |
| 0x1018 | 0 | Identity object/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 4 |
|  | 1 | Vendor ID | Seneca srl | UNSIGNED 32 | RO | 0x00000249 |
|  | 2 | Product code | ZC-4RTD Machine ID Code | UNSIGNED 32 | RO | 0x0000001B |
|  | 3 | Revision number |  | UNSIGNED 32 | RO | 0 |
|  | 4 | Serial number |  | UNSIGNED 32 | RO | 0 |
| 0x1200 | 0 | $\begin{aligned} & 1^{\text {st }} \text { SDO port/ } \\ & \text { number of } \\ & \text { mapped object } \\ & \hline \end{aligned}$ | Max subindex number | UNSIGNED 8 | RO | 2 |
|  | 1 | $\begin{aligned} & \text { COB-ID SDO } \\ & \text { Client-> Server } \end{aligned}$ | COB-ID of receive SDO | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 600 \\ \hline \end{gathered}$ |
|  | 2 | $\begin{aligned} & \text { COB-ID SDO } \\ & \text { Server-> Client } \end{aligned}$ | COB-ID of transmit SDO | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 580 \end{gathered}$ |
| 0x1801 | 0 | $\begin{aligned} & 2^{\text {nd }} \text { transmit } \\ & \text { PDO } \\ & \text { parameters } \end{aligned}$ | Number of mapped objects | UNSIGNED 8 | RO | 3 |
|  | 1 | $\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$ | COB-ID of TxPDO2 | UNSIGNED 32 | RW | $\begin{aligned} & \text { \$NODEID+ } \\ & \text { 0x40000280 } \end{aligned}$ |
|  | 2 | Transmission type | Transmission type for TxPDO2 0x00=synchronous acyclic $0 \times 01$ to $0 \times F 0=$ synchronous cyclic 0xFF=asynchronous | UNSIGNED 8 | RW | 0xFF |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | 0x0000 |
| 0x1802 | 0 | $3^{\text {ra }}$ transmit PDO parameters | Max subindex number | UNSIGNED 8 | RO | 3 |
|  | 1 | COB-ID used by $\mathrm{PDO}$ | COB-ID of TxPDO3 | UNSIGNED 32 | RW | $\begin{aligned} & \text { \$NODEID+ } \\ & 0 \times 40000380 \end{aligned}$ |
|  | 2 | Transmission type | Transmission type for TxPDO3 $0 \times 00=$ synchronous acyclic $0 \times 01$ to 0xF0=synchronous cyclic 0xFF=asynchronous | UNSIGNED 8 | RW | 0xFF |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | $0 \times 0000$ |
| 0x1A01 | 0 | $2^{\text {nd }}$ transmit PDO mapping parameter | Number of mapped objects | UNSIGNED 8 | RW | 4 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: CHANNEL 116 bits input) | UNSIGNED 32 | RW | 0x64010110 Object=0x6401 Subindex=1 Length=16bit |


|  | 2 | $2^{\text {nd }}$ object to be mapped | Second object (default: CHANNEL 216 bits input) | UNSIGNED 32 | RW | Ox64010210 <br> Object=0x6401 <br> Subindex=2 <br> Length=16bit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | $3^{\text {ra }}$ object to be mapped | Third object (default: CHANNEL 316 bits input) | UNSIGNED 32 | RW | Ox64010310 Object=0x6401 Subindex=3 Length=16bit |
|  | 4 | $4^{\text {th }}$ object to be mapped | Fourth object (default: CHANNEL 416 bits input) | UNSIGNED 32 | RW | Ox64010410 Object=0x6401 Subindex=4 Length=16bit |
| 0x1A02 | 0 | $3^{\text {rd }}$ transmit PDO mapping parameter | Number of mapped objects | UNSIGNED 8 | RW | 0 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 2 | $2^{\text {nd }}$ object to be mapped | Second object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 3 | $3^{\text {rd }}$ object to be mapped | Third object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 4 | $4^{\text {th }}$ object to be mapped | Fourth object (default: NONE) | UNSIGNED 32 | RW | 0 |


|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| 0x2001 | 0 | Module address | Station address (only if dip switch 4,5,6,7,8,9,10 are OFF) | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 7 \mathrm{~F}=127$ |
| 0x2002 | 0 | Baudrate | Station Baudrate (only if dip switch 1,2,3 are OFF) <br> $1=20 \mathrm{kbps}$ <br> 2=50kbps <br> $3=125 \mathrm{kbps}$ <br> 4=250kbps <br> 5=500kbps <br> 6=800kbps <br> $7=1 \mathrm{Mbps}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 01$ |
| 0x2003 | 0 | Master firmware code |  | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RO | 1122 |
| $0 \times 2030$ | 0 | Device temperature/ number of parameters | Max subindex number | $\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$ | RO | 4 |
|  | 1 | Internal temperature | Station internal temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RO | 0 |


|  | 2 | Hi Hi temperature | $\begin{aligned} & \hline \hline \text { Critical hot } \\ & \text { temperature (all } \\ & \text { operations stop) } \\ & {\left[{ }^{\circ} \mathrm{C} / 10\right]} \\ & \hline \end{aligned}$ | INTEGER 16 | RO | 950 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | Hi temperature | Warning for too hot temperature [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO | 900 |
|  | 4 | Low temperature | ```Critical low temperature (all operations stop) ['C/10]``` | INTEGER 16 | RO | -250 |
| $0 \times 2100$ | 0 | Channel global status |  | $\begin{gathered} \text { UNSIGNED } \\ 16 \\ \hline \end{gathered}$ | RO | 0 |
| $0 \times 2104$ | 0 | Channels CMD | Max subindex number | $\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$ | RO | 4 |
|  | 1 | CMD CH1 | Writing 0xCODE will return the channel fw code into $0 \times 2015$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 2 | CMD CH2 | Writing 0xCODE will return the channel fw code into $0 \times 2015$ | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 3 | CMD CH3 | Writing 0xCODE will return the channel fw code into 0x2015 | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 4 | CMD CH4 | Writing 0xCODE will return the channel fw code into $0 \times 2015$ | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
| 0x2105 | 0 | Channels AUX CMD | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | $\begin{aligned} & \text { AUX CMD } \\ & \mathrm{CH} 1 \end{aligned}$ | Fw code return value | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 2 | AUX CMD CH2 | Fw code return value | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 3 | AUX CMD CH3 | Fw code return value | $\begin{gathered} \text { UNSIGNED } \\ 16 \\ \hline \end{gathered}$ | RW | 0 |
|  | 4 | AUX CMD CH4 | Fw code return value | $\begin{gathered} \hline \text { UNSIGNED } \\ 16 \\ \hline \end{gathered}$ | RW | 0 |
| 0x2106 | 0 | Channel 1 setup | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 6 |
|  | 1 | CH1 sensor type | $\begin{aligned} & \text { Channel } 1 \text { sensor } \\ & \text { type } \\ & 0=\text { PT100 } \\ & 1=\text { NI100 } \\ & 2=\text { PT500 } \\ & 3=\text { PT1000 } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 2 | CH1 Measure type | $0={ }^{\circ} \mathrm{C}, 1=\Omega$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0 |
|  | 3 | CH1 - <br> Wire compensation | $\begin{aligned} & 0=2 \text { or } 4 \text { wires } \\ & \text { connection } \\ & 1=3 \text { wires connection } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 4 | CH1 Frequency rejection | $\begin{aligned} & 0=50 \mathrm{~Hz} \\ & 1=60 \mathrm{~Hz} \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 5 | CH1 - Filter | $\begin{aligned} & 0=\text { None, } 1=\text { Min, } \\ & 7=\text { Max } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 2 |
|  | 6 | CH1 - Enable | 0=channel disabled | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |


|  |  |  | 1=channel enabled |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x2107 | 0 | Channel 2 setup | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 6 |
|  | 1 | CH2 sensor type | $\begin{aligned} & \text { Channel } 2 \text { sensor } \\ & \text { type } \\ & 0=\text { PT100 } \\ & 1=\text { NI100 } \\ & 2=\text { PT500 } \\ & 3=\text { PT1000 } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 2 | $\mathrm{CH} 2-$ <br> Measure type | $0={ }^{\circ} \mathrm{C}, 1=\Omega$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 3 | CH2 - <br> Wire <br> compensation | $0=2$ or 4 wires connection $1=3$ wires connection | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 4 | CH2 Frequency rejection | $\begin{aligned} & 0=50 \mathrm{~Hz} \\ & 1=60 \mathrm{~Hz} \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 5 | CH2 - Filter | $\begin{aligned} & 0=\text { None, } 1=\text { Min, } \\ & 7=\text { Max } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 2 |
|  | 6 | CH2 - Enable | $\begin{aligned} & 0=\text { channel } \\ & \text { disabled } \\ & 1=\text { channel enabled } \end{aligned}$ | $\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$ | RW | 1 |
| 0x2108 | 0 | Channel 3 setup | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 6 |
|  | 1 | CH3 sensor type | $\begin{aligned} & \text { Channel } 3 \text { sensor } \\ & \text { type } \\ & 0=\text { PT100 } \\ & 1=\text { NI100 } \\ & 2=\text { PT500 } \\ & 3=\text { PT1000 } \end{aligned}$ | $\begin{aligned} & \hline \text { UNSIGNED } \\ & 8 \end{aligned}$ | RW | 0 |
|  | 2 | $\mathrm{CH} 3-$ <br> Measure type | $0={ }^{\circ} \mathrm{C}, 1=\Omega$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0 |
|  | 3 | CH3 - <br> Wire <br> compensation | $0=2$ or 4 wires connection $1=3$ wires connection | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 4 | CH3 Frequency rejection | $\begin{aligned} & 0=50 \mathrm{~Hz} \\ & 1=60 \mathrm{~Hz} \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 5 | CH3 - Filter | $\begin{aligned} & 0=\text { None, } 1=\text { Min, } \\ & 7=\text { Max } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 2 |
|  | 6 | CH3 - Enable | $\begin{aligned} & 0=\text { channel } \\ & \text { disabled } \\ & 1=\text { channel enabled } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
| 0x2109 | 0 | Channel 4 setup | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RO | 6 |
|  | 1 | CH4 sensor type | $\begin{aligned} & \text { Channel } 4 \text { sensor } \\ & \text { type } \\ & 0=\text { PT100 } \\ & \text { 1=NI100 } \\ & \text { 2=PT500 } \\ & \text { 3=PT1000 } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |


|  | 2 | CH4 Measure type | $0={ }^{\circ} \mathrm{C}, 1=\Omega$ | $\begin{gathered} \hline \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | CH4 - <br> Wire compensation | $\begin{aligned} & 0=2 \text { or } 4 \text { wires } \\ & \text { connection } \\ & 1=3 \text { wires connection } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 4 | CH4 - <br> Frequency rejection | $\begin{aligned} & 0=50 \mathrm{~Hz} \\ & 1=60 \mathrm{~Hz} \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 5 | CH4 - Filter | $\begin{aligned} & 0=\text { None, } 1=\text { Min, } \\ & 7=\text { Max } \end{aligned}$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 2 |
|  | 6 | CH4 - Enable | $\begin{aligned} & 0=\text { channel } \\ & \text { disabled } \\ & 1=\text { channel enabled } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
| $0 \times 2125$ | 0 | Fault actions mask | $\begin{aligned} & 1 \text { = last good } \\ & 0=\text { load object } 0 \times 2160 \end{aligned}$ <br> Bit $11 . .0$ not used | $\begin{aligned} & \text { UNSIGNED } \\ & 16 \end{aligned}$ | RW | 0xF000 |
| $0 \times 2154$ | 0 | Wire resistance value [ $\Omega / 100$ ] | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | CHANNEL1- <br> Wire resistance value [ $\Omega / 100$ ] | $3^{\text {rd }}$ wire resistance value [ $\Omega / 100$ ] | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RO | 0 |
|  | 2 | CHANNEL2Wire resistance value [ $\Omega / 100$ ] | $3^{\text {rd }}$ wire resistance value [ $\Omega / 100$ ] | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RO | 0 |
|  | 3 | CHANNEL3- <br> Wire resistance <br> value [ $\Omega / 100$ ] | $3^{\text {rd }}$ wire resistance value [ $\Omega / 100$ ] | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RO | 0 |
|  | 4 | CHANNEL4- <br> Wire resistance value [ $\Omega / 100]$ | $3^{\text {rd }}$ wire resistance value [ $\Omega / 100$ ] | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RO | 0 |
| 0x2160 | 0 | Fault value | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | CHANNEL1 <br> Fault value <br> [ ${ }^{\circ} \mathrm{C}, \Omega$ ] | Float value | REAL 32 | RW | 850.0 |
|  | 2 | CHANNEL2 Fault value $\left[{ }^{\circ} \mathrm{C}, \Omega\right.$ ] | Float value | REAL 32 | RW | 850.0 |
|  | 3 | CHANNEL3 Fault value $\left[{ }^{\circ} \mathrm{C}, \Omega\right.$ ] | Float value | REAL 32 | RW | 850.0 |
|  | 4 | CHANNEL4 Fault value $\left[{ }^{\circ} \mathrm{C}, \Omega\right.$ ] | Float value | REAL 32 | RW | 850.0 |


|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| $0 \times 6401$ | 0 | 16 bit input | Number of input | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RO | 4 |
|  | 1 | CH1 16 bit | Channel 1 value [ ${ }^{\circ} \mathrm{C} / 10$ ] or [ $\Omega / 10]:$ Pt100, Ni100; [ $\Omega / 100]$ :others | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RO |  |



|  | 1 | CH1 interrupt lower value | Analogue interrupt lower limit - 16 bit [ ${ }^{\circ} \mathrm{C} / 10$ ] or [ $\Omega / 10]:$ Pt100, Ni100; [ $\Omega / 100]$ :others | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | CH2 interrupt lower value | Analogue interrupt lower limit - 16 bit [ ${ }^{\circ} \mathrm{C} / 10$ ] or [ $\Omega / 10]:$ Pt100, Ni100; [ $\Omega / 100]$ :others | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 3 | CH3 interrupt lower value | Analogue interrupt lower limit - 16 bit [ ${ }^{\circ} \mathrm{C} / 10$ ] or [ $\Omega / 10]:$ Pt100, Ni100; [ $\Omega / 100]$ :others | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 4 | CH4 interrupt lower value | Analogue interrupt lower limit - 16 bit [ ${ }^{\circ} \mathrm{C} / 10$ ] or [ $\Omega / 10]:$ Pt100, Ni100; [ $\Omega / 100]$ :others | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
| $0 \times 6426$ | 0 | Analogue interrupt delta 16 bit | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | CH 1 interrupt delta value | Analogue interrupt delta value - 16 bit [ ${ }^{\circ} \mathrm{C} / 10$ ] or [ $\Omega / 10]: P t 100$, Ni100; [ $\Omega / 100]$ :others | $\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$ | RW | 0 |
|  | 2 | CH2 interrupt delta value | Analogue interrupt delta value - 16 bit [ ${ }^{\circ} \mathrm{C} / 10$ ] or [ $\Omega / 10]:$ Pt100, Ni100; [ $\Omega / 100]$ :others | $\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$ | RW | 0 |
|  | 3 | CH3 interrupt delta value | Analogue interrupt delta value - 16 bit [ ${ }^{\circ} \mathrm{C} / 10$ ] or [ $\Omega / 10]:$ Pt100, Ni100; [ $\Omega / 100]$ :others | $\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$ | RW | 0 |
|  | 4 | CH 4 interrupt delta value | Analogue interrupt delta value - 16 bit [ ${ }^{\circ} \mathrm{C} / 10$ ] or [ $\Omega / 10]:$ Pt100, Ni100; [ $\Omega / 100]$ :others | $\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$ | RW | 0 |
| $0 \times 6429$ | 0 | Analogue interrupt upper limit 32 bit | Number upper value 16 bit | REAL 32 | RO | 4 |
|  | 1 | CH1 interrupt upper value | Analogue interrupt upper limit - 16 bit [ ${ }^{\circ} \mathrm{C}$ ] or [ $\Omega$ ] | REAL 32 | RW | 0 |
|  | 2 | CH2 interrupt upper value | Analogue interrupt upper limit - 16 bit $\left[{ }^{\circ} \mathrm{C}\right]$ or [ $\Omega$ ] | REAL 32 | RW | 0 |


|  | 3 | CH3 interrupt upper value | Analogue interrupt upper limit - 16 bit [ ${ }^{\circ} \mathrm{C}$ ] or [ $\Omega$ ] | REAL 32 | RW | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | CH4 interrupt upper value | Analogue interrupt upper limit - 16 bit [ ${ }^{\circ} \mathrm{C}$ ] or [ $\Omega$ ] | REAL 32 | RW | 0 |
| 0x642A | 0 | Analogue interrupt lower limit 16 bit | $\begin{aligned} & \text { Number lower value } \\ & 16 \text { bit } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | CH1 interrupt lower value | Analogue interrupt lower limit - 16 bit [ ${ }^{\circ} \mathrm{C}$ ] or [ $\Omega$ ] | REAL 32 | RW | 0 |
|  | 2 | CH2 interrupt lower value | Analogue interrupt lower limit - 16 bit [ ${ }^{\circ} \mathrm{C}$ ] or [ $\Omega$ ] | REAL 32 | RW | 0 |
|  | 3 | CH3 interrupt lower value | Analogue interrupt lower limit - 16 bit [ $\left.{ }^{\circ} \mathrm{C}\right]$ or $[\Omega]$ | REAL 32 | RW | 0 |
|  | 4 | CH4 interrupt lower value | Analogue interrupt lower limit - 16 bit [ ${ }^{\circ} \mathrm{C}$ ] or $[\Omega]$ | REAL 32 | RW | 0 |
| 0x642B | 0 | Analogue interrupt delta 16 bit | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | CH1 interrupt delta value | Analogue interrupt delta value - 32 bit [ $\left.{ }^{\circ} \mathrm{C}\right]$ or $[\Omega]$ | REAL 32 | RW | 0 |
|  | 2 | CH2 interrupt delta value | Analogue interrupt delta value - 32 bit [ ${ }^{\circ} \mathrm{C}$ ] or [ $\Omega$ ] | REAL 32 | RW | 0 |
|  | 3 | CH3 interrupt delta value | Analogue interrupt delta value - 32 bit $\left[{ }^{\circ} \mathrm{C}\right.$ ] or [ $\Omega$ ] | REAL 32 | RW | 0 |
|  | 4 | CH4 interrupt delta value | Analogue interrupt delta value - 32 bit $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\Omega$ ] | REAL 32 | RW | 0 |

## Seneca Z-PC Line module: ZC-8AI

In this chapter are described the features of ZC-8AI module, based on CANOpen protocol.
NOTE: "0x" means an exadecimal number interpretation.

## CANOpen features

| TECHNICAL DATA |  |
| :--- | :--- |
| Baud rate | $20,50,125,250,500,800,1000 \mathrm{kbps}$ |
| Typical conversion time | 20 ms for 4 channels $/ 40 \mathrm{~ms}$ for 8 channels |
| Input supported | Voltage from 0 to 10.5 V <br> Current from 0 to 20.5 mA |
| CANOpen TECHNICAL DATA |  |
| NMT | Slave |
|  | Node guarding, heartbeat |
| Node ID | HW switch or software |
| Number of PDO | 4 TX |
| PDO modes | Event triggered, Sync (cyclic), Sync (acyclic) |
| PDO mapping | Variable |
| PDO linking | supported |
| Number of SDO | 1 server |
| Error message | yes |
| Supported application | Cia 301 v4.02 |
| Layer | Cia 401 v2.01 |

## CANOpen TPDOs transmission type supported

| Object Value 0x180x Sub 2 | TRANSMISSION TYPE |
| :--- | :--- |
| 0 | Synchronous - acyclic |
| From 1 to 240 | Synchronous - cyclic |
| 255 | Asynchronous |

## CANOpen PDOs mapping

| OBJECTS FOR DEFAULT MAPPING |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PDO NR | COB-ID | $\begin{aligned} & \text { MAPPED } \\ & \text { OBJECTS } \end{aligned}$ | INDEX | SUBINDEX |
| TPDO2 | $\begin{gathered} 0 \times 40000280 \\ + \\ \text { Nodeld } \end{gathered}$ | Value CH1 16 bit | $0 \times 6401$ | 1 |
|  |  | $\begin{gathered} \text { Value } \mathrm{CH} 2 \\ 16 \text { bit } \end{gathered}$ | $0 \times 6401$ | 2 |
|  |  | $\begin{gathered} \hline \text { Value CH3 } \\ 16 \text { bit } \\ \hline \end{gathered}$ | 0x6401 | 3 |
|  |  | $\begin{gathered} \text { Value } \mathrm{CH} 4 \\ 16 \text { bit } \\ \hline \end{gathered}$ | 0x6401 | 4 |
| TPDO3 | $\begin{gathered} 0 \times 40000380 \\ + \\ \text { Nodeld } \end{gathered}$ | $\begin{gathered} \text { Value CH5 } \\ 16 \text { bit } \end{gathered}$ | 0x6401 | 5 |
|  |  | $\begin{gathered} \text { Value CH6 } \\ 16 \text { bit } \\ \hline \end{gathered}$ | 0x6401 | 6 |
|  |  | $\begin{gathered} \text { Value } \mathrm{CH} 7 \\ 16 \text { bit } \end{gathered}$ | 0x6401 | 7 |
|  |  | $\begin{gathered} \text { Value } \mathrm{CH} 8 \\ 16 \text { bit } \end{gathered}$ | 0x6401 | 8 |

Note that TPDO COB-ID must start with $0 \times 4$.

## CANOpen emergency message

The Emergency message is composed by:
2 bytes of EEC (Emergency error code)
1 bytes of ER (Error register)
Max of 4 bytes of MEF (Manufacturer error filled)

For EEC code 0xFF10, the emergency message is:

| EMERGENCY MESSAGE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 |  |  |  |
| $0 \times$ FF10 |  | 0x81 |  | MEF |  |  |

With this MEF:

| MEF (Manufacturer-specific Error Field) for EEC 0xFF10 |  |  |
| :---: | :---: | :---: |
| BIT | DESCRIPTION | OBJECT FOR ERROR DETAILS |
| 15 | Channel 1/2 fail | $0 \times 2120$ subindex 1 |
| 14 | Channel 3/4 fail | $0 \times 2120$ subindex 2 |
| 13 | Channel 5/6 fail | $0 \times 2120$ subindex 3 |
| 12 | Channel 7/8 fail | $0 \times 2120$ subindex 4 |
| 11 | Channel 1 fail | $0 \times 2120$ subindex 1 |
| 10 | Channel 2 fail | $0 \times 2120$ subindex 1 |
| 9 | Channel 3 fail | $0 \times 2120$ subindex 2 |
| 8 | Channel 4 fail | $0 \times 2120$ subindex 2 |
| 7 | Channel 5 fail | $0 \times 2120$ subindex 3 |
| 6 | Channel 6 fail | $0 \times 2120$ subindex 3 |
| 5 | Channel 7 fail | $0 \times 2120$ subindex 4 |
| 4 | Channel 8 fail | $0 \times 2120$ subindex 4 |
| 3 | Channel 1/2 communication fail | $0 \times 2121$ subindex 1 |
| 2 | Channel 3/4 communication fail | $0 \times 2121$ subindex 2 |
| 1 | Channel 5/6 communication fail | $0 \times 2121$ subindex 3 |
| 0 | Channel 7/8 communication fail | $0 \times 2121$ subindex 4 |

For "voltage error", the emergency message is:

| EMERGENCY MESSAGE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 |  |  |
| 0xFF10 |  | 0x85 | Object 0x2100 |  |  |

For a "timeout command" or "error command", the emergency message is:

| EMERGENCY MESSAGE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 | BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 | BYTE 5 |  |
| 0xFF11 |  | $0 \times 81$ | Channel ID | Object 0x2103 subindex channelID |  |  |

Where the meaning of CHANNEL ID is:

| CHANNEL ID |  |
| :---: | :--- |
| CHANNEL ID | DESCRIPTION |
| $0 \times 01$ | Channel 1/2 |
| $0 \times 02$ | Channel 3/4 |
| $0 \times 03$ | Channel 5/6 |
| $0 \times 04$ | Channel 7/8 |

For "CPU ERROR" the Emergency message will be:

| EMERGENCY MESSAGE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 | BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 | BYTE 5 | BYTE 6 |  |
| 0xFF20 |  | $0 \times 81$ |  | Object 0x1002 |  |  |  |


| EEC |  |
| :--- | :--- |
| CODE | No error |
| $0 \times 0000$ | Generic error |
| $0 \times 1000$ | CPU temperature over HOT STOP ERROR |
| $0 \times 4201$ | CPU temperature over HOT STOP |
| $0 \times 4202$ | CPU temperature under COLD ERROR |
| $0 \times 4203$ | Communication Can Overrun |
| $0 \times 8110$ | Error passive |
| $0 \times 8120$ | Life Guard error |
| $0 \times 8130$ | Recovered from bus off |
| $0 \times 8140$ | General input channels error |
| $0 \times F F 10$ | Command for input channel error |
| $0 \times F F 11$ | CPU error |
| $0 \times F F 20$ |  |


| ER |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 |  |
| Generic | 0 | Voltage | temperature | communication | 0 | 0 | Manufacture |  |

Where bit equal to "0" means "no error".

Object 0x1002: manufacturer status register
Object $0 \times 1002$ is the CPU status.

| OBJECT 1002 |  |
| :---: | :---: |
| BIT | DESCRIPTION |
| $31 . .18$ | NA |
| 17 | Channel 8 saturation error |
| 16 | Channel 7 saturation error |
| 15 | Channel 6 saturation error |
| 14 | Channel 5 saturation error |
| 13 | Channel 4 saturation error |
| 12 | Channel 3 saturation error |
| 11 | Channel 2 saturation error |
| 10 | Channel 1 saturation error |
| 9 | Good data value |
| 8 | Precision data value |
| $7 . .1$ | NA |
| 0 | CPU EEPROM CRC ERROR |

Object 0x1006: communication window lenght

| OBJECT 1006 |  |
| :---: | :---: |
| MIN VAL [ms] | MAX VAL [ms] |
| 10 | 10000 |

Object 0x1007: synchronous window lenght

| OBJECT 1007 |  |  |
| :---: | :---: | :---: |
| MIN VAL [ms] | MAX VAL [ms] |  |
| 2 | 2000 |  |

## CANOpen manufacturer specific profile

If dip-switches are in "from memory" mode, the node address is selectable by Object 0x2001.

| NODE ADDRESS (Object 0x2001) |  |
| :---: | :--- |
| Object value | Description |
| $0 . .127$ | Node address |

If dip-switches are in "from memory" mode, the baud rate is selectable by Object $0 \times 2002$.

| BAUDRATE (Object 0x2002) |  |
| :---: | :--- |
| Object value | Description |
| 1 | $20 \mathrm{kbit} / \mathrm{s}$ |
| 2 | $50 \mathrm{kbit} / \mathrm{s}$ |
| 3 | $125 \mathrm{kbit} / \mathrm{s}$ |
| 4 | $250 \mathrm{kbit} / \mathrm{s}$ |
| 5 | $500 \mathrm{kbit} / \mathrm{s}$ |
| 6 | $800 \mathrm{kbit} / \mathrm{s}$ |
| 7 | $1 \mathrm{Mbit} / \mathrm{s}$ |

Object $0 \times 2030$ can be used to monitor the CPU temperature.

| CPU TEMPERATURE (Object 0x2030) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Actual temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ |
| 2 | Temperature for HOT STOP ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 95.0^{\circ} \mathrm{C}$ |
| 3 | Temperature for HOT ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 90.0^{\circ} \mathrm{C}$ |
| 4 | Temperature for COLD ERRROR $\left[{ }^{\circ} \mathrm{C} / 10\right]-25.0^{\circ} \mathrm{C}$ |

The HOT STOP temperature sends in pre-operational the station.
The HOT ERROR and the COLD ERROR temperature sends the Emergency Object.
The Object is Read Only.

Object $0 \times 2100$ contains the channel status:

| CHANNEL STATUS (Object 0x2100) |  |  |
| :---: | :---: | :---: |
| BIT | Description | Object for error details |
| 15 | Channel 1/2 fail | 0x2120 subindex 1 |
| 14 | Channel 3/4 fail | 0x2120 subindex 2 |
| 13 | Channel 5/6 fail | 0x2120 subindex 3 |
| 12 | Channel $7 / 8$ fail | 0x2120 subindex 4 |
| 11 | Channel 1 fail | 0x2120 subindex 1 |
| 10 | Channel 2 fail | 0x2120 subindex 1 |
| 9 | Channel 3 fail | 0x2120 subindex 2 |
| 8 | Channel 4 fail | 0x2120 subindex 2 |
| 7 | Channel 5 fail | 0x2120 subindex 3 |
| 6 | Channel 6 fail | 0x2120 subindex 3 |
| 5 | Channel 7 fail | 0x2120 subindex 4 |
| 4 | Channel 8 fail | 0x2120 subindex 4 |
| 3 | Channel 1/2 communication fail | 0x2121 subindex 1 |
| 2 | Channel $3 / 4$ communication fail | 0x2121 subindex 2 |
| 1 | Channel 5/6 communication fail | 0x2121 subindex 3 |
| 0 | Channel 7/8 communication fail | 0x2121 subindex 4 |

Object $0 \times 2106,0 \times 2107,0 \times 2108,0 \times 2109$ contain the channels configuration:

| CHANNELS CONFIGURATION |  |
| :---: | :--- |
| Subindex | Description |
| $0 \times 2106$ | Channel $1 / 2$ configuration |
| $0 \times 2107$ | Channel $3 / 4$ configuration |
| $0 \times 2108$ | Channel $5 / 6$ configuration |
| $0 \times 2109$ | Channel $7 / 8$ configuration |


| SUBINDEX CHANNELS CONFIGURATION |  |
| :---: | :---: |
| Subindex | Description |
| 1 | Channel A enable ( $1=$ enable, $0=$ disable) |
| 2 | Channel B enable ( $1=$ enable, $0=$ disable) |
| 3 | Channel A type ( $1=$ current, $0=$ voltage) |
| 4 | Channel B type ( $1=$ current, $0=$ voltage) |
| 5 | Frequency rejection ( $1=60 \mathrm{~Hz}, 0=50 \mathrm{~Hz}$ ) |
| 6 | Filter |


| FILTER |  |
| :---: | :--- |
| Value | Filter type |
| 0 | disabled |
| 1 | Average filter |
| 2 | Hires+average filter |
| 3 | Hires+average+exponential (level1) filter |
| . | . |
| 7 | Hires+average+exponential (level5) filter |

## INTEGER SCALE PROCESS

Integer input objects can be scaled by a BEGIN (referred to 0 mV or $0 \mu \mathrm{~A}$ ) for a 0 integer value and a END (referred to 10000 mV or $20000 \mu \mathrm{~A}$ ) for a 10000 integer value.

The formula is: Int16=((VAL-BGN)/(END-BGN))*10000

## BEGIN FOR INTEGER SCALE: Object Ox2700

The object sets the customization of the associated mV or $\mu \mathrm{A}$ input value to the 0 integer value.

| BEGIN FOR INTEGER SCALE (Object 0x2700) |  |
| :---: | :--- |
| SUBINDEX | Description |
| 1 | Begin value for channel 1 $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 2 | Begin value for channel 2 $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 3 | Begin value for channel 3 $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 4 | Begin value for channel 4 $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 5 | Begin value for channel 5 $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 6 | Begin value for channel 6 $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 7 | Begin value for channel 7 $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 8 | Begin value for channel 8 $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |

## END FOR INTEGER SCALE: Object 0x2701

The object sets the customization of the associated mV or $\mu \mathrm{A}$ input value to the 10000 integer value.

| BEGIN FOR INTEGER SCALE (Object 0x2700) |  |
| :---: | :--- |
| SUBINDEX | Description |
| 1 | End value for channel $1[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 2 | End value for channel $2[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 3 | End value for channel 3 $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 4 | End value for channel $4[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 5 | End value for channel $5[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 6 | End value for channel $6[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 7 | End value for channel $7[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 8 | End value for channel $8[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |

## DIP-SWITCH configuration

| BAUD-RATE (Dip-Switches: SW1) |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| 1 | 2 | 3 | Meaning |  |  |  |
|  |  | Only Baud-Rate is acquired from memory(EEPROM) |  |  |  |  |
|  |  | $\bullet$ | 20 kbps |  |  |  |
|  | $\bullet$ |  | 50 kbps |  |  |  |
|  | $\bullet$ | $\bullet$ | 125 kbps |  |  |  |
| $\bullet$ |  |  | 250 kbps |  |  |  |
| $\bullet$ |  | $\bullet$ | 500 kbps |  |  |  |
| $\bullet$ | $\bullet$ |  | 800 kbps |  |  |  |
| $\bullet$ | $\bullet$ | $\bullet$ | 1 Mbps |  |  |  |
| ADDRESS (Dip-Switches: SW1) |  |  |  |  |  |  |
| 4 | 5 | 6 | 7 | 8 |  |  |
|  |  |  |  |  |  |  |

## CANOpen LED description

| SERVICE (DIAGNOSTIC) LED DESCRIPTION |  |  |
| :--- | :--- | :--- |
| LED | LED status | Meaning |
| RUN | Blinking light | Pre-operational mode |
|  | Single flash | Stop mode |
|  | ON | Operational mode |
| ERROR | Single flash | At least one error counter has reached or exceed the warning <br> level |
|  | Double flash | Guard event |
|  | Triple flash | The SYNC has not received within the configurated <br> communication cycle timeout period |
|  | ON | The CAN controller is bus off |
|  | OFF | No error |
| FAIL | Blinking | Data receiving from RS232 |
|  | ON | At least one channel is in error mode |
| POWER | ON | Power supply |

## Object for analog data

Object $0 \times 6401$ contains the 16 bit (signed) values for channels 1.. 8 .

| 16 BIT INTEGER INPUT (Object 0x6411) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 116 bit input value |
| 2 | Channel 216 bit input value |
| 3 | Channel 316 bit input value |
| 4 | Channel 416 bit input value |
| 5 | Channel 516 bit input value |
| 6 | Channel 616 bit input value |
| 7 | Channel 716 bit input value |
| 8 | Channel 816 bit input value |

Object $0 \times 6403$ contains the floating point (32 bit) values for channel 1..8.

| 32 BIT REAL INPUT (Object 0x6403) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 floating point value |
| 2 | Channel 2 floating point value |
| 3 | Channel 3 floating point value |
| 4 | Channel 4 floating point value |
| 5 | Channel 5 floating point value |
| 6 | Channel 6 floating point value |
| 7 | Channel 7 floating point value |
| 8 | Channel 8 floating point value |

Object 0x6423 interrupt enable:
If the value is " 1 ", the station can generate asynchronous TxPDO.
If the value is " 0 ", the station can not generate asynchronous TxPDO.

Object $0 \times 6430$ assigns the measure unit for the analogic input measure. Subindex 1 is referred to input 1 ...subindex 8 is referred to input 8 .

|  | SI UNIT (Object 0x6430) |
| :---: | :--- |
| Measure unit | Value |
| mV | 0xFD260000 |
| $\mu \mathrm{A}$ | 0xFA0400000 |

## Object 0x6424 interrupt upper limit integer

If enabled (see object 0x6423), an interrupt is triggered when the analogue input is equal or rises above the given value.

As long as the trigger condition is met, every change of the analogue input data generates a new interrupt.

| INTERRUPT UPPER LIMIT 16 BIT INTEGER (OBJECT 0X6424) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 upper limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 2 | Channel 2 upper limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 3 | Channel 3 upper limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 4 | Channel 4 upper limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 5 | Channel 5 upper limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 6 | Channel 6 upper limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 7 | Channel 7 upper limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 8 | Channel 8 upper limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |

## Object 0x6425 interrupt lower limit integer

If enabled (see object $0 \times 6423$ ), an interrupt is triggered when the analogue input falls below the given value.

As long as the trigger condition is met, every change of the analogue input data generates a new interrupt.

| INTERRUPT LOWER LIMIT 16 BIT INTEGER (OBJECT 0X6425) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 lower limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 2 | Channel 2 lower limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 3 | Channel 3 lower limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 4 | Channel 4 lower limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 5 | Channel 5 lower limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 6 | Channel 6 lower limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 7 | Channel 7 lower limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 8 | Channel 8 lower limit integer $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |

## Object 0x6426 interrupt delta unsigned

The object sets the delta value (rising or falling above or below the last communicated value) for interrupt-enabled analogue inputs (if object $0 \times 6423$ enables the interrupt).

| INTERRUPT DELTA UNSIGNED INTEGER 16 BIT (OBJECT 0X6426) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 delta unsigned $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 2 | Channel 2 delta unsigned $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 3 | Channel 3 delta unsigned $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 4 | Channel 4 delta unsigned $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 5 | Channel 5 delta unsigned $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 6 | Channel 6 delta unsigned $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 7 | Channel 7 delta unsigned $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 8 | Channel 8 delta unsigned $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |

## Object 0x6429 interrupt upper limit float

This object sets the converted upper limits for interrupt-enabled analogue inputs (see $0 \times 6423$ object). As long as the trigger condition is met, every change of the analogue input data generates a new interrupt.

| INTERRUPT UPPER LIMIT 32BIT FLOAT (OBJECT 0X6429) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 upper limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 2 | Channel 2 upper limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 3 | Channel 3 upper limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 4 | Channel 4 upper limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 5 | Channel 5 upper limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 6 | Channel 6 upper limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 7 | Channel 7 upper limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 8 | Channel 8 upper limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |

## Object 0x642A interrupt lower limit float

This object sets the lower limits for interrupt-enabled analogue inputs (see $0 \times 6423$ object). As long as the trigger condition is met, every change of the analogue input data generates a new interrupt.

| INTERRUPT LOWER LIMIT 32BIT FLOAT (OBJECT 0X6425) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 lower limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 2 | Channel 2 lower limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 3 | Channel 3 lower limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 4 | Channel 4 lower limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 5 | Channel 5 lower limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 6 | Channel 6 lower limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 7 | Channel 7 lower limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 8 | Channel 8 lower limit float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |

## Object 0x642B interrupt delta float

The object sets the delta value (rising or falling above or below the last sample) in float format for interrupt-enabled analogue inputs (if object $0 \times 6423$ enables the interrupt).

| INTERRUPT DELTA 323 BIT FLOAT (OBJECT 0X6426) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 delta float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 2 | Channel 2 delta float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 3 | Channel 3 delta float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 4 | Channel 4 delta float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 5 | Channel 5 delta float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 6 | Channel 6 delta float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 7 | Channel 7 delta float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |
| 8 | Channel 8 delta float $[\mathrm{mV}]$ or $[\mu \mathrm{A}]$ |

## CANOpen functional diagram

## For integer values



## For float values



## CANOpen Object dictionary

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| 0x1000 | 0 | Device type | Profile 401=0x191 | UNSIGNED 32 | RO | 0x00040191 |
| $0 \times 1001$ | 0 | Error register | Error register (DS401) | UNSIGNED 8 | RO | 0 |
| 0x1002 | 0 | Manufacturer Status register | Status register | UNSIGNED 32 | RO |  |
| 0x1005 | 0 | SYNC COB-ID | The device consumes the SYNC message | UNSIGNED 32 | RW | 0x00000080 |
| 0x1006 | 0 | Comm. window lenght | Sync interval [us] | UNSIGNED 32 | RW | 0 |
| 0x1007 | 0 | Synchronous window lenght | The window [us] for the PDO transmission after the SYNC | UNSIGNED 32 | RW | 0 |
| 0x1008 | 0 | Manufacturer Device name | Device name | VISIBLE STRING | RO | "ZC-8AI" |
| 0x1009 | 0 | Manufacturer HW version | Hardware version | VISIBLE STRING | RO | "SC000000" |
| 0x100A | 0 | Manufacturer SW version | Software version | $\begin{aligned} & \text { VISIBLE } \\ & \text { STRING } \end{aligned}$ | RO | "SW001142" |
| 0x100C | 0 | Guard Time | [ms] | UNSIGNED 16 | RW | 0 |
| 0x100D | 0 | Life time factor | Max delay between two guarding telegrams= Guard_Time . Life_Time_Factor | UNSIGNED 8 | RW | 0 |
| $0 \times 1010$ | 0 | Store parameters/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 8 |
|  | 1 | Save all parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 2 | Save communication parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 3 | Save application parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 4 | Save manufacturer parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |


|  | 5 | Save CH1-2 <br> parameters | Store not volatile <br> parameters (write in <br> ASCII "save" for store <br> process MSB <br> 0x65766173 LSB) | UNSIGNED 32 | RW |
| :---: | :--- | :--- | :--- | :--- | :--- |


|  | 8 | Restore CH7-8 parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x1014 | 0 | $\begin{aligned} & \hline \text { COB-ID } \\ & \text { emergency } \\ & \text { Object } \end{aligned}$ |  | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 80 \end{gathered}$ |
| 0x1017 | 0 | Heartbeat producer time | Time (ms) $0 \times 0000=$ there is not heartbeat service | UNSIGNED 16 | RW | 0 |
| 0x1018 | 0 | Identity object/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 4 |
|  | 1 | Vendor ID | Seneca srl | UNSIGNED 32 | RO | 0x00000249 |
|  | 2 | Product code | ZC-8AI Machine ID Code | UNSIGNED 32 | RO | 0x00001D00 |
|  | 3 | Revision number |  | UNSIGNED 32 | RO | 0 |
|  | 4 | Serial number |  | UNSIGNED 32 | RO | 0 |
| 0x1200 | 0 | $1^{\text {st }}$ SDO port/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 2 |
|  | 1 | $\begin{aligned} & \text { COB-ID SDO } \\ & \text { Client-> Server } \end{aligned}$ | COB-ID of receive SDO | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 600 \end{gathered}$ |
|  | 2 | $\begin{aligned} & \text { COB-ID SDO } \\ & \text { Server-> Client } \end{aligned}$ | COB-ID of transmit SDO | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 580 \end{gathered}$ |
| 0x1801 | 0 | $\begin{aligned} & 2^{\text {nd }} \text { transmit } \\ & \text { PDO } \\ & \text { parameters } \\ & \hline \end{aligned}$ | Number of mapped objects | UNSIGNED 8 | RO | 3 |
|  | 1 | $\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$ | COB-ID of TxPDO2 | UNSIGNED 32 | RW | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 40000280 \end{gathered}$ |
|  | 2 | Transmission type | Transmission type for TxPDO2 0x00=synchronous acyclic $0 \times 01$ to $0 \times F 0=$ synchronous cyclic 0xFF=asynchronous | UNSIGNED 8 | RW | 0xFF |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | 0x0000 |
| 0x1802 | 0 | $\begin{aligned} & 3^{\text {rd }} \text { transmit PDO } \\ & \text { parameters } \end{aligned}$ | Max subindex number | UNSIGNED 8 | RO | 3 |
|  | 1 | COB-ID used by PDO | COB-ID of TxPDO3 | UNSIGNED 32 | RW | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 40000380 \end{gathered}$ |
|  | 2 | Transmission type | Transmission type for TxPDO3 $0 \times 00=$ synchronous acyclic $0 \times 01$ to 0xF0=synchronous cyclic 0xFF=asynchronous | UNSIGNED 8 | RW | 0xFF |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | $0 \times 0000$ |


| 0x1803 | 0 | 4th transmit <br> PDO <br> parameters <br> POB | Max subindex number | UNSIGNED 8 | RO | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | $\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$ | COB-ID of TxPDO4 | UNSIGNED 32 | RW | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 40000480 \end{gathered}$ |
|  | 2 | Transmission type | Transmission type for TxPDO4 0x00=synchronous acyclic $0 \times 01$ to 0xF0=synchronous cyclic 0xFF=asynchronous | UNSIGNED 8 | RW | 0xFF |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | 0x0000 |
| 0x1804 | 0 | $\begin{aligned} & \text { 5th transmit } \\ & \text { PDO } \\ & \text { parameters } \end{aligned}$ | Max subindex number | UNSIGNED 8 | RO | 3 |
|  | 1 | $\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$ | COB-ID of TxPDO5 | UNSIGNED 32 | RW | 0x80000000 |
|  | 2 | Transmission type | Transmission type for TxPDO5 0x00=synchronous acyclic $0 \times 01$ to $0 \times F 0=$ synchronous cyclic 0xFF=asynchronous | UNSIGNED 8 | RW | 0xFF |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | 0x0000 |
| 0x1A01 | 0 | $2^{\text {nd }}$ transmit PDO mapping parameter | Number of mapped objects | UNSIGNED 8 | RW | 4 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: CHANNEL 116 bits input) | UNSIGNED 32 | RW | Ox64010110 Object=0x6401 Subindex=1 Length=16bit |
|  | 2 | $2^{\text {nd }}$ object to be mapped | Second object (default: CHANNEL 216 bits input) | UNSIGNED 32 | RW | $0 \times 64010210$ Object $=0 \times 6401$ Subindex=2 Length $=16$ bit |
|  | 3 | $3^{\text {rd }}$ object to be mapped | Third object (default: CHANNEL 316 bits input) | UNSIGNED 32 | RW | Ox64010310 Object=0x6401 Subindex=3 Length=16bit |
|  | 4 | $4^{\text {th }}$ object to be mapped | Fourth object (default: CHANNEL 416 bits input) | UNSIGNED 32 | RW | Ox64010410 Object=0x6401 Subindex=4 Length=16bit |
| 0x1A02 | 0 | $\begin{aligned} & 3^{\text {rd }} \text { transmit PDO } \\ & \text { mapping } \\ & \text { parameter } \end{aligned}$ | Number of mapped objects | UNSIGNED 8 | RW | 4 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: CHANNEL 516 bits input) | UNSIGNED 32 | RW | Ox64010510 Object $=0 \times 6401$ Subindex=5 Length $=16$ bit |
|  | 2 | $2^{\text {nd }}$ object to be mapped | Second object (default: CHANNEL 616 bits input) | UNSIGNED 32 | RW | $0 \times 64010610$ Object $=0 \times 6401$ Subindex=6 Length $=16$ bit |


|  | 3 | $3^{\text {rd }}$ object to be mapped | Third object (default: CHANNEL 716 bits input) | UNSIGNED 32 | RW | $0 \times 64010710$ Object $=0 \times 6401$ Subindex=7 Length $=16$ bit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | $4^{\text {th }}$ object to be mapped | Fourth object (default: CHANNEL 816 bits input) | UNSIGNED 32 | RW | 0x64010810 Object $=0 \times 6401$ Subindex=8 Length $=16$ bit |
| 0x1A03 | 0 | $4^{\text {th }}$ transmit PDO mapping parameter | Number of mapped object | UNSIGNED 8 | RW | 4 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 2 | $2^{\text {nd }}$ object to be mapped | Second object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 3 | $3^{\text {rd }}$ object to be mapped | Third object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 4 | $4^{\text {th }}$ object to be mapped | Fourth object (default: NONE) | UNSIGNED 32 | RW | 0 |
| 0x1A04 | 0 | $5^{\text {th }}$ transmit PDO mapping parameter | Number of mapped object | UNSIGNED 8 | RW | 4 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 2 | $2^{\text {nd }}$ object to be mapped | Second object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 3 | $3^{\text {rd }}$ object to be mapped | Third object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 4 | $4^{\text {th }}$ object to be mapped | Fourth object (default: NONE) | UNSIGNED 32 | RW | 0 |
| MANUFAOTURER PROEMEAEEA |  |  |  |  |  |  |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| 0x2001 | 0 | Module address | Station address (only if dip switch $4,5,6,7,8,9,10$ are OFF) | $\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$ | RW | $0 \times 7 \mathrm{~F}=127$ |
| 0x2002 | 0 | Baudrate | Station Baudrate (only if dip switch 1,2,3 are OFF) <br> $1=20 \mathrm{kbps}$ <br> 2=50kbps <br> $3=125 \mathrm{kbps}$ <br> $4=250 \mathrm{kbps}$ <br> $5=500 \mathrm{kbps}$ <br> $6=800 \mathrm{kbps}$ <br> $7=1 \mathrm{Mbps}$ | $\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$ | RW | $0 \times 01$ |
| 0x2003 | 0 | Firmware release |  | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RO |  |
| 0x2030 | 0 | Device temperature/ number of parameters | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | Internal temperature | Station internal temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RO | 0 |
|  | 2 | Hi Hi temperature | Critical hot temperature (all operations stop) [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO | 950 |


|  | 3 | Hi temperature | Warning for too hot temperature [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO | 900 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | Low temperature | $\begin{aligned} & \text { Critical low } \\ & \text { temperature (all } \\ & \text { operations stop) } \\ & {\left[{ }^{\circ} \mathrm{C} / 10\right]} \end{aligned}$ | INTEGER 16 | RO | -250 |
| $0 \times 2100$ | 0 | Channel $1 . .8$ global status |  | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RO |  |
| 0x2106 | 0 | Channel 1-2 configuration | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 6 |
|  | 1 | CH1 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 2 | CH2 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 3 | CH1 type | $0=\mathrm{V} 1=\mathrm{mA}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0 |
|  | 4 | $\begin{aligned} & \hline \mathrm{CH} 2- \\ & \text { type } \\ & \hline \end{aligned}$ | $0=\mathrm{V} 1=\mathrm{mA}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0 |
|  | 5 | CH1-2 line frequency rejection | $0=50 \mathrm{~Hz}, 1=60 \mathrm{~Hz}$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 6 | Filter | ```0=disable, 1=average, 2=hires+average, 3=exp lev1,...7=exp lev5``` | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 2 |
| $0 \times 2107$ | 0 | Channel 3-4 configuration | Number of parameters | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 6 |
|  | 1 | CH3 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 1 |
|  | 2 | CH4 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 3 | CH3 - <br> type | $0=\mathrm{V} 1=\mathrm{mA}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 4 | $\begin{aligned} & \mathrm{CH} 4- \\ & \text { type } \end{aligned}$ | $0=\mathrm{V} 1=\mathrm{mA}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 5 | CH3-4 line frequency rejection | $0=50 \mathrm{~Hz}, 1=60 \mathrm{~Hz}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 6 | Filter | ```0=disable, 1=average, 2=hires+average, 3=exp lev1,...7=exp lev5``` | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 2 |
| $0 \times 2108$ | 0 | Channel 5-6 configuration | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RO | 6 |
|  | 1 | CH5 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 1 |
|  | 2 | CH6 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 3 | $\begin{aligned} & \hline \begin{array}{l} \text { CH5 - } \\ \text { type } \end{array} \\ & \hline \end{aligned}$ | $0=\mathrm{V} 1=\mathrm{mA}$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0 |
|  | 4 | $\begin{aligned} & \mathrm{CH} 6- \\ & \text { type } \end{aligned}$ | $0=\mathrm{V} 1=\mathrm{mA}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 5 | CH5-6 line frequency rejection | $0=50 \mathrm{~Hz}, 1=60 \mathrm{~Hz}$ | $\begin{aligned} & \hline \text { UNSIGNED } \\ & 8 \end{aligned}$ | RW | 0 |


|  | 6 | Filter | ```0=disable, 1=average, 2=hires+average, 3=exp lev1,...7=exp lev5``` | $\begin{gathered} \hline \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 \times 2109$ | 0 | Channel 7-8 configuration | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 6 |
|  | 1 | CH7 enable | $0=$ disable <br> 1=enable | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 2 | CH8 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 3 | CH7 type | $0=\mathrm{V} 1=\mathrm{mA}$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0 |
|  | 4 | CH8 type | $0=\mathrm{V} 1=\mathrm{mA}$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 0 |
|  | 5 | CH7-8 line frequency rejection | $0=50 \mathrm{~Hz}, 1=60 \mathrm{~Hz}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 6 | Filter | ```0=disable, 1=average, 2=hires+average, 3=exp lev1,\ldots.7=exp lev5``` | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 2 |
| $0 \times 2700$ | 0 | Begin integer scale | Begin value nr | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RO | 8 |
|  | 1 | Begin scale CH1 | Channel 1 begin integer scale [mV] or $[\mu \mathrm{A}]$ | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 2 | Begin scale CH2 | Channel 2 begin integer scale [mV] or $[\mu \mathrm{A}]$ | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 3 | Begin scale CH3 | Channel 3 begin integer scale [mV] or $[\mu \mathrm{A}$ ] | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 4 | Begin scale CH4 | Channel 4 begin integer scale [mV] or $[\mu \mathrm{A}]$ | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 5 | Begin scale CH5 | Channel 5 begin integer scale [mV] or $[\mu \mathrm{A}$ ] | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 6 | Begin scale CH6 | Channel 6 begin integer scale [mV] or $[\mu \mathrm{A}]$ | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 7 | Begin scale CH7 | Channel 7 begin integer scale [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 8 | Begin scale CH8 | Channel 8 begin integer scale [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
| $0 \times 2701$ | 0 | End scale integer |  | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RO | 8 |
|  | 1 | $\begin{aligned} & \text { End scale } \\ & \mathrm{CH} 1 \end{aligned}$ | Channel 1 end integer scale [mV] or $[\mu \mathrm{A}]$ | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 10000 |
|  | 2 | End scale CH2 | Channel 2 end integer scale [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 10000 |
|  | 3 | End scale CH3 | Channel 3 end integer scale [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 10000 |


|  | 4 | $\begin{aligned} & \hline \text { End scale } \\ & \mathrm{CH} 4 \end{aligned}$ | Channel 4 end integer scale [ mV ] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \hline \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 10000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 | $\begin{aligned} & \text { End scale } \\ & \text { CH5 } \end{aligned}$ | Channel 5 end integer scale [ mV ] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 10000 |
|  | 6 | $\begin{aligned} & \text { End scale } \\ & \text { CH6 } \end{aligned}$ | Channel 6 end integer scale [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 10000 |
|  | 7 | $\begin{aligned} & \text { End scale } \\ & \mathrm{CH} 7 \end{aligned}$ | Channel 7 end integer scale [ mV ] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 10000 |
|  | 8 | $\begin{aligned} & \text { End scale } \\ & \mathrm{CH} 8 \end{aligned}$ | Channel 8 end integer scale [ mV ] or $[\mu \mathrm{A}]$ | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 10000 |
| STANDARD DEVAE PROFILEAREA |  |  |  |  |  |  |
| INDEX | $\begin{gathered} \text { SUB } \\ \text { INDEX } \end{gathered}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| 0x6401 | 0 | 16 bit input | Number of input float | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 8 |
|  | 1 | CH1 value 16 bits | [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RO |  |
|  | 2 | $\mathrm{CH} 2 \text { value } 16$ bits | [ mV ] or [ $\mu \mathrm{A}$ ] | INTEGER 16 | RO |  |
|  | 3 | CH3 value 16 bits | [ mV ] or [ $\mu \mathrm{A}$ ] | INTEGER 16 | RO |  |
|  | 4 | $\begin{array}{\|l} \hline \text { CH4 value } 16 \\ \text { bits } \\ \hline \end{array}$ | [ mV ] or [ $\mu \mathrm{A}$ ] | INTEGER 16 | RO |  |
|  | 5 | $\begin{array}{\|l} \hline \text { CH5 value } 16 \\ \text { bits } \\ \hline \end{array}$ | [ mV ] or [ $\mu \mathrm{A}$ ] | INTEGER 16 | RO |  |
|  | 6 | $\begin{aligned} & \text { CH6 value } 16 \\ & \text { bits } \\ & \hline \end{aligned}$ | [ mV ] or [ $\mu \mathrm{A}$ ] | INTEGER 16 | RO |  |
|  | 7 | $\begin{aligned} & \mathrm{CH} 7 \text { value } 16 \\ & \text { bits } \end{aligned}$ | [ mV ] or [ $\mu \mathrm{A}$ ] | INTEGER 16 | RO |  |
|  | 8 | $\begin{aligned} & \text { CH8 value } 16 \\ & \text { bits } \\ & \hline \end{aligned}$ | [mV] or [ $\mu \mathrm{A}$ ] | INTEGER 16 | RO |  |
| 0x6403 | 0 | Float input | Number of input float | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 8 |
|  | 1 | CH 1 value real | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RO |  |
|  | 2 | CH 2 value real | [ mV ] or [ $\mu \mathrm{A}$ ] | REAL 32 | RO |  |
|  | 3 | CH 3 value real | [ mV ] or [ $\mu \mathrm{A}$ ] | REAL 32 | RO |  |
|  | 4 | CH 4 value real | [ mV ] or [ $\mu \mathrm{A}$ ] | REAL 32 | RO |  |
|  | 5 | CH 5 value real | [ mV ] or [ $\mu \mathrm{A}$ ] | REAL 32 | RO |  |
|  | 6 | CH 6 value real | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RO |  |
|  | 7 | CH 7 value real | [mV] or [ A ] | REAL 32 | RO |  |
|  | 8 | CH8 value real | [mV] or [ A ] | REAL 32 | RO |  |
| 0x6423 | 0 | Analogue input interrupt global enable | 0=disable asynchronous TxPDO 1=enable asynchronous TxPDO | BOOLEAN | RW | 0 |

\(\left.$$
\begin{array}{|c|c|c|c|c|c|}\hline 0 \times 6424 & 0 & \begin{array}{l}\text { analogue } \\
\text { interrupt } \\
\text { upper limit - } \\
\text { 16bit }\end{array}
$$ \& \& \begin{array}{l}UNSIGNED <br>

8\end{array} \& RO\end{array}\right]\)| 8 |
| :---: |
|  |

| $0 \times 6426$ | 0 | Analogue interrupt delta limit 16bit |  | $\begin{aligned} & \hline \text { UNSIGNED } \\ & 8 \end{aligned}$ | RO | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Analogue interrupt delta limit CH1 16bit | [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 2 | Analogue interrupt delta limit CH2 - 16bit | [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 3 | Analogue interrupt delta limit CH3 - 16bit | [mV] or [ $\mu \mathrm{A}$ ] | $\begin{aligned} & \text { UNSIGNED } \\ & 16 \end{aligned}$ | RW | 0 |
|  | 4 | Analogue interrupt delta limit CH4 - 16bit | [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 5 | Analogue interrupt delta limit CH5 - 16bit | [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 6 | Analogue interrupt delta limit CH6 - 16bit | [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \hline \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 7 | Analogue interrupt delta limit CH7 - 16bit | [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 8 | Analogue interrupt delta limit CH8 - 16bit | [mV] or [ $\mu \mathrm{A}$ ] | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
| 0x6429 | 0 | analogue interrupt upper limit float |  | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 8 |
|  | 1 | Analogue interrupt upper limit CH1 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 2 | Analogue interrupt upper limit CH2 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 3 | Analogue interrupt upper limit CH3 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 4 | Analogue interrupt upper limit CH4 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 5 | Analogue interrupt upper limit CH5 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 6 | Analogue interrupt upper limit CH6 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 7 | Analogue interrupt upper limit CH7 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 8 | Analogue interrupt upper limit CH8 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |


| 0x642A | 0 | Analogue interrupt lower limit float |  | REAL 32 | RO | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Analogue interrupt lower limit CH1 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 2 | Analogue interrupt lower limit CH2 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 3 | Analogue interrupt lower limit CH3 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 4 | Analogue interrupt lower limit CH 4 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 5 | Analogue interrupt lower limit CH5 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 6 | Analogue interrupt lower limit CH6 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 7 | Analogue interrupt lower limit CH7 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 8 | Analogue interrupt lower limit CH8 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
| 0x642B | 0 | Analogue interrupt delta limit float |  | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 8 |
|  | 1 | Analogue interrupt delta limit CH1 float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 2 | Analogue interrupt delta limit CH2 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 3 | Analogue interrupt delta limit CH3 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 4 | Analogue interrupt delta limit CH4 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 5 | Analogue interrupt delta limit CH5 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 6 | Analogue interrupt delta limit CH6 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 7 | Analogue interrupt delta limit CH7 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |
|  | 8 | Analogue interrupt delta limit CH8 - float | [mV] or [ $\mu \mathrm{A}$ ] | REAL 32 | RW | 0 |


| $0 \times 6430$ | 0 | SI unit |  | $\underset{8}{\text { UNSIGNED }}$ | RO | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | SI unit CH1 | $\begin{aligned} & 0 x F D 260000=\mathrm{mV} \\ & 0 \times F D 040000=\mu \mathrm{A} \end{aligned}$ | $\underset{32}{\text { UNSIGNED }}$ | RW | 0xFD260000 |
|  | 2 | SI unit CH2 | $\begin{aligned} & \text { 0xFD260000=mV } \\ & 0 \times F D 040000=\mu \mathrm{A} \\ & \hline \end{aligned}$ | $\underset{32}{\text { UNSIGNED }}$ | RW | 0xFD260000 |
|  | 3 | SI unit CH3 | $\begin{aligned} & 0 \times F D 260000=\mathrm{mV} \\ & 0 \times F D 040000=\mu \mathrm{A} \end{aligned}$ | $\underset{32}{\text { UNSIGNED }}$ | RW | 0xFD260000 |
|  | 4 | SI unit CH4 | $\begin{aligned} & 0 \times F D 260000=\mathrm{mV} \\ & 0 \times F D 040000=\mu \mathrm{A} \end{aligned}$ | $\underset{32}{\text { UNSIGNED }}$ | RW | 0xFD260000 |
|  | 5 | SI unit CH5 | $\begin{aligned} & 0 \times F D 260000=\mathrm{mV} \\ & 0 \times F D 040000=\mu \mathrm{A} \end{aligned}$ | $\underset{32}{\text { UNSIGNED }}$ | RW | 0xFD260000 |
|  | 6 | SI unit CH6 | $\begin{aligned} & 0 \times F D 260000=\mathrm{mV} \\ & 0 \times F D 040000=\mu \mathrm{A} \end{aligned}$ | $\underset{32}{\text { UNSIGNED }}$ | RW | 0xFD260000 |
|  | 7 | SI unit CH7 | $\begin{aligned} & \text { 0xFD260000=mV } \\ & \text { OxFD040000 }=\mu \mathrm{A} \\ & \hline \end{aligned}$ | $\underset{32}{ }{ }_{3}$ | RW | 0xFD260000 |
|  | 8 | SI unit CH8 | $\begin{aligned} & \text { 0xFD260000=mV } \\ & 0 \times F D 040000=\mu \mathrm{A} \\ & \hline \end{aligned}$ | $\underset{32}{ }{ }_{3}$ | RW | 0xFD260000 |

## Seneca Z-PC Line module: ZC-8TC

In this chapter are described the features of ZC-8TC module, based on CANOpen protocol.
NOTE: "0x" means an exadecimal number interpretation.

CANOpen features

| TECHNICAL DATA |  |
| :--- | :--- |
| Baud rate | $20,50,125,250,500,800,1000 \mathrm{kbps}$ |
| Typical conversion time | 20 ms for 4 channels $/ 40 \mathrm{~ms}$ for 8 channels |
| Thermocouple supported | $\mathrm{J}, \mathrm{K}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{B}, \mathrm{E}, \mathrm{N}$ |
| Range in mV mode | From -10.1 mV to +81.4 mV |
| Built-in Cold junction compensation | YES (configurable) |
|  | CANOpen TECHNICAL DATA |
| NMT | Slave |
|  | Node guarding, heartbeat |
| Number of PDO | HW switch or software |
| PDO modes | 4 TX |
| PDO mapping | Event triggered, Sync (cyclic), Sync (acyclic) |
| PDO linking | Variable |
| Number of SDO | supported |
| Error message | 1 server |
| Supported application | yes |
| Layer | Cia 301 v4.02 |


| SUPPORTED THERMOCOUPLES |  |  |
| :---: | :---: | :---: |
| TC TYPE | RANGE | LINEARIZATION ERROR |
| J | $-210 . .1200^{\circ} \mathrm{C}$ | $0.05^{\circ} \mathrm{C}$ |
| K | $-200 . .1372^{\circ} \mathrm{C}$ | $0.05^{\circ} \mathrm{C}$ |
| R | $-50 . .1768^{\circ} \mathrm{C}$ | $0.02^{\circ} \mathrm{C}$ |
| S | $-50 . .1768^{\circ} \mathrm{C}$ | $0.02^{\circ} \mathrm{C}$ |
| T | $-200 . .400^{\circ} \mathrm{C}$ | $0.04^{\circ} \mathrm{C}$ |
| B | $250 . .1820^{\circ} \mathrm{C}$ | $0.03^{\circ} \mathrm{C}$ |
| E | $-200 . .1000^{\circ} \mathrm{C}$ | $0.02^{\circ} \mathrm{C}$ |
| N | $-200 . .1300^{\circ} \mathrm{C}$ | $0.04^{\circ} \mathrm{C}$ |

CANOpen TPDOs transmission type supported

| Object Value 0x180x Sub 2 | TRANSMISSION TYPE |
| :---: | :---: |
| 0 | Synchronous - acyclic |
| From 1 to 240 | Synchronous - cyclic |
| 255 | Asynchronous |

## CANOpen PDOs mapping

| OBJECTS FOR DEFAULT MAPPING |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PDO NR | COB-ID | MAPPED OBJECTS | INDEX | SUBINDEX |
| TPDO2 | $\begin{gathered} 0 \times 40000280 \\ + \\ \text { Nodeld } \end{gathered}$ | $\begin{gathered} \text { Value } \mathrm{CH} 1 \\ 16 \text { bit } \end{gathered}$ | 0x6401 | 1 |
|  |  | $\begin{gathered} \text { Value CH2 } \\ 16 \text { bit } \end{gathered}$ | 0x6401 | 2 |
|  |  | $\begin{gathered} \text { Value } \mathrm{CH} 3 \\ 16 \text { bit } \end{gathered}$ | $0 \times 6401$ | 3 |
|  |  | $\begin{gathered} \text { Value } \mathrm{CH} 4 \\ 16 \text { bit } \end{gathered}$ | $0 \times 6401$ | 4 |
| TPDO3 | $\begin{gathered} 0 \times 40000380 \\ + \\ \text { Nodeld } \end{gathered}$ | $\begin{gathered} \text { Value CH5 } \\ 16 \text { bit } \end{gathered}$ | 0x6401 | 5 |
|  |  | $\begin{gathered} \text { Value CH6 } \\ 16 \text { bit } \\ \hline \end{gathered}$ | 0x6401 | 6 |
|  |  | $\begin{gathered} \text { Value CH7 } \\ 16 \text { bit } \end{gathered}$ | 0x6401 | 7 |
|  |  | $\begin{gathered} \text { Value CH8 } \\ 16 \text { bit } \end{gathered}$ | 0x6401 | 8 |

Note that TPDO COB-ID must start with 0x4.

## CANOpen emergency message

The Emergency message is composed by:
2 bytes of EEC (Emergency error code)
1 bytes of ER (Error register)
Max of 4 bytes of MEF (Manufacturer error filled)

For EEC code 0xFF10, the emergency message is:

| EMERGENCY MESSAGE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 |  |  |  |
| $0 \times F F 10$ |  | 0x81 |  | MEF |  |  |

With this MEF:

| MEF (Manufacturer-specific Error Field) for EEC 0xFF10 |  |  |
| :---: | :---: | :---: |
| BIT | DESCRIPTION | OBJECT FOR ERROR DETAILS |
| 15 | Channel 1/2 fail | $0 \times 2120$ subindex 1 |
| 14 | Channel 3/4 fail | $0 \times 2120$ subindex 2 |
| 13 | Channel 5/6 fail | $0 \times 2120$ subindex 3 |
| 12 | Channel 7/8 fail | $0 \times 2120$ subindex 4 |
| 11 | Channel 1 not connected <br> or acquisition error | $0 \times 2120$ subindex 1 |
| 10 | Channel 2 not connected <br> or acquisition error | $0 \times 2120$ subindex 1 |
| 9 | Channel 3 not connected <br> or acquisition error | $0 \times 2120$ subindex 2 |
| 8 | Channel 4 not connected <br> or acquisition error | $0 \times 2120$ subindex 2 |
| 7 | Channel 5 not connected <br> or acquisition error | $0 \times 2120$ subindex 3 |
| 6 | Channel 6 not connected <br> or acquisition error | $0 \times 2120$ subindex 3 |
| 4 | Channel 7 not connected <br> or acquisition error | $0 \times 2120$ subindex 4 |
| 3 | Channel 8 not connected <br> or acquisition error | $0 \times 2121$ subindex 1 |
| 2 | Channel 1/2 communication fail | $0 \times 2121$ subindex 2 |
| 1 | Channel 3/4 communication fail | $0 \times 2121$ subindex 3 4 |
| 0 | Channel 5/6 communication fail |  |

For "voltage error", the emergency message is:

| EMERGENCY MESSAGE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| BYTE 0 BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 |  |
| $0 \times$ FF10 |  | 0x85 | Object 0x2100 |  |

For a "timeout command" or "error command", the emergency message is:
EMERGENCY MESSAGE

| EMERGENCY MESSAGE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 | BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 | BYTE 5 |
| 0xFF11 |  | $0 \times 81$ | Channel ID | Object 0x2103 subindex channelID |  |

Where the meaning of CHANNEL ID is:

| CHANNEL ID |  |
| :---: | :--- |
| CHANNEL ID | DESCRIPTION |
| $0 \times 01$ | Channel $1 / 2$ |
| $0 \times 02$ | Channel 3/4 |
| $0 \times 03$ | Channel 5/6 |
| $0 \times 04$ | Channel 7/8 |

For "CPU ERROR" the Emergency message will be:

| EMERGENCY MESSAGE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 | BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 | BYTE 5 | BYTE 6 |  |
| 0xFF20 |  | $0 \times 81$ | Object 0x1002 |  |  |  |  |


| EEC |  |
| :--- | :--- |
| CODE | No error |
| $0 \times 0000$ | Generic error |
| $0 \times 1000$ | CPU temperature over HOT STOP ERROR |
| $0 \times 4201$ | CPU temperature over HOT STOP |
| $0 \times 4202$ | CPU temperature under COLD ERROR |
| $0 \times 4203$ | Communication Can Overrun |
| $0 \times 8110$ | Error passive |
| $0 \times 8120$ | Life Guard error |
| $0 \times 8130$ | Recovered from bus off |
| $0 \times 8140$ | General input channels error |
| $0 \times F F 10$ | Command for input channel error |
| $0 \times F F 11$ | CPU error |
| $0 \times F F 20$ |  |


| ER |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 |  |
| Generic | 0 | Voltage | temperature | communication | 0 | 0 | Manufacture |  |

Where bit equal to "0" means "no error".

Object 0x1002: manufacturer status register
Object $0 \times 1002$ is the CPU status.

| OBJECT 1002 |  |
| :---: | :---: |
| BIT | DESCRIPTION |
| $31 . .10$ | NA |
| 9 | Good data value |
| 8 | Precision data value |
| $7 . .1$ | NA |
| 0 | FLASH CRC ERROR |

Object 0x1006: communication window lenght

| OBJECT 1006 |  |  |
| :---: | :---: | :---: |
| MIN VAL [ms] | MAX VAL [ms] |  |
| 10 | 10000 |  |

## Object 0x1007: synchronous window lenght

| OBJECT 1007 |  |
| :---: | :---: |
| MIN VAL [ms] | MAX VAL [ms] |
| 2 | 2000 |

## CANOpen manufacturer specific profile

If dip-switches are in "from memory" mode, the node address is selectable by Object 0x2001.

| NODE ADDRESS (Object 0x2001) |  |
| :---: | :--- |
| Object value | Description |
| $0 . .127$ | Node address |

If dip-switches are in "from memory" mode, the baud rate is selectable by Object 0x2002.

| BAUDRATE (Object 0x2002) |  |
| :---: | :--- |
| Object value | Description |
| 1 | $20 \mathrm{kbit} / \mathrm{s}$ |
| 2 | $50 \mathrm{kbit} / \mathrm{s}$ |
| 3 | $125 \mathrm{kbit} / \mathrm{s}$ |
| 4 | $250 \mathrm{kbit} / \mathrm{s}$ |
| 5 | $500 \mathrm{kbit} / \mathrm{s}$ |
| 6 | $800 \mathrm{kbit} / \mathrm{s}$ |
| 7 | $1 \mathrm{Mbit} / \mathrm{s}$ |

Object $0 \times 2030$ can be used to monitor the CPU temperature.

| CPU TEMPERATURE (Object 0x2030) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Actual temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ |
| 2 | Temperature for HOT STOP ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 95.0^{\circ} \mathrm{C}$ |
| 3 | Temperature for HOT ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 90.0^{\circ} \mathrm{C}$ |
| 4 | Temperature for COLD ERRROR $\left[{ }^{\circ} \mathrm{C} / 10\right]-25.0^{\circ} \mathrm{C}$ |

The HOT STOP temperature sends in pre-operational the station.
The HOT ERROR and the COLD ERROR temperature sends the Emergency Object.
The Object is Read Only.

Object $0 \times 2100$ contains the channel status:

| CHANNEL STATUS (Object 0x2100) |  |  |
| :---: | :---: | :---: |
| BIT | Description | Object for error details |
| 15 | Channel 1/2 fail | $0 \times 2120$ subindex 1 |
| 14 | Channel 3/4 fail | $0 \times 2120$ subindex 2 |
| 13 | Channel 5/6 fail | $0 \times 2120$ subindex 3 |
| 12 | Channel 7/8 fail | $0 \times 2120$ subindex 4 |
| 11 | Channel 1 not connected <br> or acquisition error | $0 \times 2120$ subindex 1 |
| 10 | Channel 2 not connected <br> or acquisition error | $0 \times 2120$ subindex 1 |
| 9 | Channel 3 not connected <br> or acquisition error | $0 \times 2120$ subindex 2 |
| 8 | Channel 4 not connected <br> or acquisition error | $0 \times 2120$ subindex 2 |
| 7 | Channel 5 not connected <br> or acquisition error | $0 \times 2120$ subindex 3 |
| 5 | Channel 6 not connected <br> or acquisition error | $0 \times 2120$ subindex 3 |
| 4 | Channel 7 not connected <br> or acquisition error | $0 \times 2120$ subindex 4 |
| 3 | Channel 8 not connected <br> or acquisition error | $0 \times 2120$ subindex 4 subindex 1 |
| 2 | Channel 1/2 communication fail | $0 \times 2121$ subindex 2 |
| 1 | Channel 3/4 communication fail | $0 \times 2121$ subindex 3 |
| 0 | Channel 5/6 communication fail | $0 \times 2121$ subindex 4 |

Object $0 \times 2106,0 \times 2107,0 \times 2108,0 \times 2109$ contain the channels configuration:

| CHANNELS 1-2 CONFIGURATION (Object 0x2106) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel A enable (1=enable, 0=disable) |
| 2 | Channel B enable (1=enable, 0=disable) |
| 3 | Data type (1=mV, 0=temperature) |
| 4 | Cold junction enable (1=enable, 0=disable) |
| 5 | Frequency rejection (1=60 Hz, 0=50 Hz) |
| 6 | Filter |
| 7 | Channel A thermocouple type |
| 8 | Channel B thermocouple type |

Objects $0 \times 2107,0 \times 2108,0 \times 2109$ contain respective the channels 3-4, 5-6, 7-8 configurations.

| FILTER |  |
| :---: | :--- |
| Value | Filter type |
| 0 | disabled |
| 1 | Average filter |
| 2 | Hires+average filter |
| 3 | Hires+average+exponential (level1) filter |
| .. | . |
| 7 | Hires+average+exponential (level5) filter |


| THERMOCOUPLE TYPE |  |
| :---: | :---: |
| Value | Thermocouple type |
| 0 | Type J |
| 1 | Type K |
| 2 | Type R |
| 3 | Type S |
| 4 | Type T |
| 5 | Type B |
| 6 | Type E |
| 7 | Type N |

## Object Ox2125: Fault actions

Object $0 \times 2125$ sets the fault actions.

| FAULT ACTIONS |  |
| :---: | :---: |
| Value | Description |
| 15 | Fault action CH 1 0=load 0x2360, 1=last good |
| 14 | Fault action CH2 0=load 0x2360, 1=last good |
| 13 | Fault action CH3 0=load 0x2360, 1=last good |
| 12 | Fault action CH4 0=load 0x2360, 1=last good |
| 11 | Fault action CH5 0=load 0x2360, 1=last good |
| 10 | Fault action CH6 0=load 0x2360, 1=last good |
| 9 | Fault action CH7 0=load 0x2360, 1=last good |
| 8 | Fault action CH8 0=load 0x2360, 1=last good |

Object 0x2354: Cold junction temperature
Object $0 \times 2354$ contains the cold junction temperature for each channel:

| COLD JUNCTION TEMPERATURE (Object 0x2354) |  |
| :---: | :---: |
| Subindex | Description |
| 1 | Channels $1-2$ cold junction temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ |
| 2 | Channels 3-4 cold junction temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ |
| 3 | Channels $5-6$ cold junction temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ |
| 4 | Channels $7-8$ cold junction temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ |

## Object 0x2360: Fault values

Object $0 \times 2360$ contains the floating point value ( 32 bit ) to use in fault case (in agreement with object $0 \times 2125$ ). In agreement with object $0 \times 2106$, the measure unit can be in ${ }^{\circ} \mathrm{C}$ or mV .

| BEGIN FOR INTEGER SCALE (Object 0x2360) |  |
| :---: | :--- |
| SUBINDEX | Description |
| 1 | Channel 1 fault value |
| 2 | Channel 2 fault value |
| 3 | Channel 3 fault value |
| 4 | Channel 4 fault value |
| 5 | Channel 5 fault value |
| 6 | Channel 6 fault value |
| 7 | Channel 7 fault value |
| 8 | Channel 8 fault value |

## DIP-SWITCH configuration

| BAUD-RATE (Dip-Switches: SW1) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | Meaning |  |  |  |  |
|  |  |  | Only Baud-Rate is acquired from memory(EEPROM) |  |  |  |  |
|  |  | $\bullet$ | 20 kbps |  |  |  |  |
|  | $\bullet$ |  | 50 kbps |  |  |  |  |
|  | - | $\bullet$ | 125 kbps |  |  |  |  |
| $\bullet$ |  |  | 250 kbps |  |  |  |  |
| $\bullet$ |  | $\bullet$ | 500 kbps |  |  |  |  |
| $\bullet$ | $\bullet$ |  | 800 kbps |  |  |  |  |
| $\bullet$ | $\bullet$ | - | 1 Mbps |  |  |  |  |
| ADDRESS (Dip-Switches: SW1) |  |  |  |  |  |  |  |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 | Meaning |
|  |  |  |  |  |  |  | Only address is acquired from memory(EEPROM) |
|  |  |  |  |  |  | - | Address=1 |
|  |  |  |  |  | $\bullet$ |  | Address=2 |
|  |  |  |  |  | $\bullet$ | - | Address=3 |
|  |  |  |  | - |  |  | Address=4 |
|  |  |  |  | $\bullet$ |  | $\bullet$ | Address=5 |
| X | X | X | X | X | X | X | .............................. |
| $\bullet$ | Address=127 |

## CANOpen LED description

| SERVICE (DIAGNOSTIC) LED DESCRIPTION |  |  |
| :--- | :--- | :--- |
| LED | LED status | Meaning |
| RUN | Blinking light | Pre-operational mode |
|  | Single flash | Stop mode |
|  | ON | Operational mode |
| ERROR | Single flash | At least one error counter has reached or exceed the warning <br> level |
|  | Double flash | Guard event |
|  | Triple flash | The SYNC has not received within the configurated <br> communication cycle timeout period |
|  | ON | The CAN controller is bus off |
|  | OFF | No error |
| FAIL | Blinking | Data receiving from RS232 |
|  | ON | At least one channel is in error mode |
| POWER | ON | Power supply |

## Object for analog data

Object $0 x 6401$ contains the 16 bit (signed) values for channels $1 . .8$ in [ ${ }^{\circ} \mathrm{C} / 10$ ] or $[\mathrm{mV} / 100$ ] (in agreement with object $0 \times 2106$ ).

| 16 BIT INTEGER INPUT (Object 0x6401) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 116 bit input value |
| 2 | Channel 216 bit input value |
| 3 | Channel 316 bit input value |
| 4 | Channel 416 bit input value |
| 5 | Channel 516 bit input value |
| 6 | Channel 616 bit input value |
| 7 | Channel 716 bit input value |
| 8 | Channel 816 bit input value |

Object $0 \times 6403$ contains the floating point (32 bit) values for channel 1.. 8 .

| 32 BIT REAL INPUT (Object 0x6403) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 floating point value |
| 2 | Channel 2 floating point value |
| 3 | Channel 3 floating point value |
| 4 | Channel 4 floating point value |
| 5 | Channel 5 floating point value |
| 6 | Channel 6 floating point value |
| 7 | Channel 7 floating point value |
| 8 | Channel 8 floating point value |

Object 0x6423 interrupt enable:
If the value is " 1 ", the station can generate asynchronous TxPDO.
If the value is " 0 ", the station can not generate asynchronous TxPDO.

## Object 0x6424 interrupt upper limit integer

If enabled (see object 0x6423), an interrupt is triggered when the analogue input is equal or rises above the given value.

As long as the trigger condition is met, every change of the analogue input data generates a new interrupt.

| INTERRUPT UPPER LIMIT 16 BIT INTEGER (OBJECT 0X6424) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 upper limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 2 | Channel 2 upper limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 3 | Channel 3 upper limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 4 | Channel 4 upper limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 5 | Channel 5 upper limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 6 | Channel 6 upper limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 7 | Channel 7 upper limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 7 | Channel 8 upper limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |

## Object 0x6425 interrupt lower limit integer

If enabled (see object $0 \times 6423$ ), an interrupt is triggered when the analogue input falls below the given value.

As long as the trigger condition is met, every change of the analogue input data generates a new interrupt.

| INTERRUPT LOWER LIMIT 16 BIT INTEGER (OBJECT 0X6425) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 lower limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 2 | Channel 2 lower limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 3 | Channel 3 lower limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 4 | Channel 4 lower limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 5 | Channel 5 lower limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 6 | Channel 6 lower limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 7 | Channel 7 lower limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 8 | Channel 8 lower limit integer $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |

## Object 0x6426 interrupt delta unsigned

The object sets the delta value (rising or falling above or below the last communicated value) for interrupt-enabled analogue inputs (if object 0x6423 enables the interrupt).

| INTERRUPT DELTA UNSIGNED INTEGER 16 BIT (OBJECT 0X6426) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 delta unsigned $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 2 | Channel 2 delta unsigned $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 3 | Channel 3 delta unsigned $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 4 | Channel 4 delta unsigned $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 5 | Channel 5 delta unsigned $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 6 | Channel 6 delta unsigned $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 7 | Channel 7 delta unsigned $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |
| 8 | Channel 8 delta unsigned $\left[{ }^{\circ} \mathrm{C} / 10\right]$ or $[\mathrm{mV} / 100]$ |

## Object 0x6429 interrupt upper limit float

This object sets the converted upper limits for interrupt-enabled analogue inputs (see 0x6423 object). As long as the trigger condition is met, every change of the analogue input data generates a new interrupt.

| INTERRUPT UPPER LIMIT 32BIT FLOAT (OBJECT OX6429) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 upper limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 2 | Channel 2 upper limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 3 | Channel 3 upper limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 4 | Channel 4 upper limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 5 | Channel 5 upper limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 6 | Channel 6 upper limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 7 | Channel 7 upper limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 8 | Channel 8 upper limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |

## Object 0x642A interrupt lower limit float

This object sets the lower limits for interrupt-enabled analogue inputs (see $0 \times 6423$ object). As long as the trigger condition is met, every change of the analogue input data generates a new interrupt.

| INTERRUPT LOWER LIMIT 32BIT FLOAT (OBJECT 0X6425) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 lower limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 2 | Channel 2 lower limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 3 | Channel 3 lower limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 4 | Channel 4 lower limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 5 | Channel 5 lower limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 6 | Channel 6 lower limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 7 | Channel 7 lower limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 8 | Channel 8 lower limit float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |

## Object 0x642B interrupt delta float

The object sets the delta value (rising or falling above or below the last sample) in float format for interrupt-enabled analogue inputs (if object $0 \times 6423$ enables the interrupt).

| INTERRUPT DELTA 323 BIT FLOAT (OBJECT OX6426) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Channel 1 delta float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 2 | Channel 2 delta float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 3 | Channel 3 delta float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 4 | Channel 4 delta float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 5 | Channel 5 delta float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 6 | Channel 6 delta float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 7 | Channel 7 delta float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |
| 8 | Channel 8 delta float $\left[{ }^{\circ} \mathrm{C}\right]$ or $[\mathrm{mV}]$ |

## CANOpen functional diagram

For integer values


## For float values



## CANOpen Object dictionary

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| 0x1000 | 0 | Device type | Profile 401=0x191 | UNSIGNED 32 | RO | 0x00040191 |
| 0x1001 | 0 | Error register | Error register (DS401) | UNSIGNED 8 | RO | 0 |
| 0x1002 | 0 | Manufacturer Status register | Status register | UNSIGNED 32 | RO | 0 |
| 0x1005 | 0 | SYNC COB-ID | The device consumes the SYNC message | UNSIGNED 32 | RW | 0x00000080 |
| 0x1006 | 0 | Comm. window lenght | Sync interval [us] | UNSIGNED 32 | RW | 0 |
| 0x1007 | 0 | Synchronous window lenght | The window [us] for the PDO transmission after the SYNC | UNSIGNED 32 | RW | 0 |
| 0x1008 | 0 | Manufacturer Device name | Device name | VISIBLE STRING | RO | "ZC-8TC" |
| 0x1009 | 0 | Manufacturer HW version | Hardware version | VISIBLE STRING | RO | "SC000000" |
| 0x100A | 0 | Manufacturer SW version | Software version | VISIBLE STRING | RO | "SW001130" |
| 0x100C | 0 | Guard Time | [ms] | UNSIGNED 16 | RW | 0 |
| 0x100D | 0 | Life time factor | Max delay between two guarding telegrams= Guard Time . Life Time Factor | UNSIGNED 8 | RW | 0 |
| 0x1010 | 0 | Store parameters/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 8 |
|  | 1 | Save all parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 2 | Save communication parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 3 | Save application parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
|  | 4 | Save manufacturer parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |


|  | 5 | Save CH1-2 <br> parameters | Store not volatile <br> parameters (write in <br> ASCII "save" for store <br> process MSB <br> 0x65766173 LSB) | UNSIGNED 32 | RW |
| :---: | :--- | :--- | :--- | :--- | :--- |


|  | 8 | Restore CH7-8 parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x1014 | 0 | $\begin{array}{\|l} \hline \text { COB-ID } \\ \text { emergency } \\ \text { Object } \\ \hline \end{array}$ |  | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 80 \end{gathered}$ |
| 0x1017 | 0 | Heartbeat producer time | Time (ms) $0 \times 0000=$ there is not heartbeat service | UNSIGNED 16 | RW | 0 |
| 0×1018 | 0 | Identity object/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 4 |
|  | 1 | Vendor ID | Seneca srl | UNSIGNED 32 | RO | 0x00000249 |
|  | 2 | Product code | ZC-8TC Machine ID Code | UNSIGNED 32 | RO | 0x0000001C |
|  | 3 | Revision number |  | UNSIGNED 32 | RO | 0 |
|  | 4 | Serial number |  | UNSIGNED 32 | RO | 0 |
| 0x1200 | 0 | $\begin{aligned} & 1^{\text {st }} \text { SDO port/ } \\ & \text { number of } \\ & \text { mapped object } \\ & \hline \end{aligned}$ | Max subindex number | UNSIGNED 8 | RO | 2 |
|  | 1 | $\begin{aligned} & \text { COB-ID SDO } \\ & \text { Client-> Server } \end{aligned}$ | COB-ID of receive SDO | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 600 \end{gathered}$ |
|  | 2 | COB-ID SDO Server-> Client | COB-ID of transmit SDO | UNSIGNED 32 | RO | $\begin{aligned} & \text { \$NODEID+ } \\ & 0 \times 580 \end{aligned}$ |
| 0x1801 | 0 | $\begin{aligned} & 2^{\text {nd }} \text { transmit } \\ & \text { PDO } \\ & \text { parameters } \end{aligned}$ | Number of mapped objects | UNSIGNED 8 | RO | 3 |
|  | 1 | COB-ID used by PDO | COB-ID of TxPDO2 | UNSIGNED 32 | RW | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 40000280 \end{gathered}$ |
|  | 2 | Transmission type | Transmission type for TxPDO2 $0 \times 00=$ synchronous acyclic $0 \times 01$ to 0xF0=synchronous cyclic 0xFF=asynchronous | UNSIGNED 8 | RW | 0xFF |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | 0x0000 |
| 0x1802 | 0 | $\begin{aligned} & 3^{\text {rd }} \text { transmit PDO } \\ & \text { parameters } \end{aligned}$ | Max subindex number | UNSIGNED 8 | RO | 3 |
|  | 1 | COB-ID used by PDO | COB-ID of TxPDO3 | UNSIGNED 32 | RW | $\begin{aligned} & \text { \$NODEID+ } \\ & 0 \times 40000380 \end{aligned}$ |
|  | 2 | Transmission type | Transmission type for TxPDO3 $0 \times 00=$ synchronous acyclic $0 \times 01$ to 0xF0=synchronous cyclic 0xFF=asynchronous | UNSIGNED 8 | RW | 0xFF |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | 0x0000 |


| 0x1803 | 0 | 4th transmit PDO parameters | Max subindex number | UNSIGNED 8 | RO | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | $\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$ | COB-ID of TxPDO4 | UNSIGNED 32 | RW | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times C 0000480 \end{gathered}$ |
|  | 2 | Transmission type | Transmission type for TxPDO4 0x00=synchronous acyclic $0 \times 01$ to 0xF0=synchronous cyclic 0xFF=asynchronous | UNSIGNED 8 | RW | 0xFF |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | 0x0000 |
| 0x1804 | 0 | $\begin{aligned} & \text { 5th transmit } \\ & \text { PDO } \\ & \text { parameters } \end{aligned}$ | Max subindex number | UNSIGNED 8 | RO | 3 |
|  | 1 | $\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$ | COB-ID of TxPDO5 | UNSIGNED 32 | RW | 0xC0000000 |
|  | 2 | Transmission type | Transmission type for TxPDO5 $0 \times 00=$ synchronous acyclic $0 \times 01$ to 0xF0=synchronous cyclic 0xFF=asynchronous | UNSIGNED 8 | RW | 0xFF |
|  | 3 | Inhibit time | Min delay for the next PDO (ms/10) | UNSIGNED 16 | RW | 0x0000 |
| 0x1A00 | 0 | $\begin{aligned} & 1^{\text {st }} \text { transmit PDO } \\ & \text { mapping } \\ & \text { parameter } \end{aligned}$ | Number of mapped objects | UNSIGNED 8 | RO | 0 |
| 0x1A01 | 0 | $2^{\text {nd }}$ transmit PDO mapping parameter | Number of mapped objects | UNSIGNED 8 | RW | 4 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: CHANNEL 116 bits input) | UNSIGNED 32 | RW | $\begin{gathered} \text { 0x64010110 } \\ \text { Object=0x6401 } \\ \text { Subindex=1 } \\ \text { Length }=16 \text { bit } \end{gathered}$ |
|  | 2 | $2^{\text {nd }}$ object to be mapped | Second object (default: CHANNEL 216 bits input) | UNSIGNED 32 | RW | $\begin{gathered} 0 \times 64010210 \\ \text { Object }=0 \times 6401 \\ \text { Subindex=2 } \\ \text { Length }=16 \text { bit } \end{gathered}$ |
|  | 3 | $3^{\text {ra }}$ object to be mapped | Third object (default: CHANNEL 316 bits input) | UNSIGNED 32 | RW | 0x64010310 Object=0x6401 Subindex=3 Length=16bit |
|  | 4 | $4^{\text {th }}$ object to be mapped | Fourth object (default: CHANNEL 416 bits input) | UNSIGNED 32 | RW | $\begin{gathered} \text { 0x64010410 } \\ \text { Object=0x6401 } \\ \text { Subindex=4 } \\ \text { Length }=16 \text { bit } \end{gathered}$ |
| 0x1A02 | 0 | $\begin{aligned} & 3^{\text {rd }} \text { transmit PDO } \\ & \text { mapping } \\ & \text { parameter } \end{aligned}$ | Number of mapped objects | UNSIGNED 8 | RW | 4 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: CHANNEL 516 bits input) | UNSIGNED 32 | RW | Ox64010510 Object=0x6401 Subindex=5 Length=16bit |


|  | 2 | $2^{\text {nd }}$ object to be mapped | Second object (default: CHANNEL 616 bits input) | UNSIGNED 32 | RW | Ox64010610 Object $=0 \times 6401$ Subindex=6 Length $=16 \mathrm{bit}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | $3^{\text {ra }}$ object to be mapped | Third object (default: CHANNEL 716 bits input) | UNSIGNED 32 | RW | $0 \times 64010710$ Object $=0 \times 6401$ Subindex=7 Length $=16$ bit |
|  | 4 | $4^{\text {th }}$ object to be mapped | Fourth object (default: CHANNEL 816 bits input) | UNSIGNED 32 | RW | $0 \times 64010810$ Object $=0 \times 6401$ Subindex=8 Length $=16$ bit |
| 0x1A03 | 0 | $4^{\text {th }}$ transmit PDO <br> mapping <br> parameter | Number of mapped object | UNSIGNED 8 | RW | 0 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 2 | $2^{\text {nd }}$ object to be mapped | Second object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 3 | $3^{\text {rd }}$ object to be mapped | Third object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 4 | $4^{\text {th }}$ object to be mapped | Fourth object (default: NONE) | UNSIGNED 32 | RW | 0 |
| 0x1A04 | 0 | $5^{\text {th }}$ transmit PDO <br> mapping <br> parameter | Number of mapped object | UNSIGNED 8 | RW | 0 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 2 | $2^{\text {nd }}$ object to be mapped | Second object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 3 | $3^{\text {rd }}$ object to be mapped | Third object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  | 4 | $4^{\text {th }}$ object to be mapped | Fourth object (default: NONE) | UNSIGNED 32 | RW | 0 |
|  |  | ANUEA | TURER PR | )튿 | ARE |  |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| 0x2001 | 0 | Module address | Station address (only if dip switch 4,5,6,7,8,9,10 are OFF) | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 7 \mathrm{~F}=127$ |
| 0x2002 | 0 | Baudrate | Station Baudrate (only if dip switch 1,2,3 are OFF) <br> $1=20 \mathrm{kbps}$ <br> $2=50 \mathrm{kbps}$ <br> $3=125 \mathrm{kbps}$ <br> 4=250kbps <br> $5=500 \mathrm{kbps}$ <br> $6=800 \mathrm{kbps}$ <br> $7=1 \mathrm{Mbps}$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 01$ |
| 0x2003 | 0 | Firmware release |  | $\begin{gathered} \text { UNSIGNED } \\ 16 \\ \hline \end{gathered}$ | RO | 1132 |
| $0 \times 2030$ | 0 | Device temperature/ number of parameters | Max subindex number | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | Internal temperature | Station internal temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RO | 0 |


|  | 2 | Hi Hi temperature | Critical hot temperature (all operations stop) [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO | 950 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | Hi temperature | Warning for too hot temperature [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO | 900 |
|  | 4 | Low temperature | Critical Iow temperature (all operations stop) [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO | -250 |
| 0x2104 | 0 | Channel CMD | Number of parameters | $\underset{8}{\text { UNSIGNED }}$ | RO | 4 |
|  | 1 | CMD CH1-2 | Writing 0xCODE will return the channel fw code into $0 \times 2105$ | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 2 | CMD CH3-4 | Writing 0xCODE will return the channel fw code into $0 \times 2105$ | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 3 | CMD CH5-6 | Writing 0xCODE will return the channel fw code into $0 \times 2105$ | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 4 | CMD CH7-8 | Writing 0xCODE will return the channel fw code into $0 \times 2105$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
| 0x2105 | 0 | Channel aux CMD | Number of parameters | $\underset{8}{\text { UNSIGNED }}$ | RO |  |
|  | 1 | $\begin{aligned} & \hline \text { AUX CMD } \\ & \mathrm{CH} 1-2 \\ & \hline \end{aligned}$ | FW Code return value | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 2 | $\begin{aligned} & \text { AUX CMD } \\ & \text { CH3-4 } \\ & \hline \end{aligned}$ | FW Code return value | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 3 | $\begin{aligned} & \text { AUX CMD } \\ & \text { CH5-6 } \end{aligned}$ | FW Code return value | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 4 | $\begin{aligned} & \text { AUX CMD } \\ & \text { CH7-8 } \\ & \hline \end{aligned}$ | FW Code return value | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
| 0x2106 | 0 | Channel 1-2 parameters | Number of parameters | $\underset{8}{\text { UNSIGNED }}$ | RO | 8 |
|  | 1 | CH1 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 2 | CH2 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\underset{8}{\text { UNSIGNED }}$ | RW | 1 |
|  | 3 | $\begin{aligned} & \mathrm{CH} 1-\mathrm{CH} 2 \\ & \text { Data type } \\ & \hline \end{aligned}$ | $0={ }^{\circ} \mathrm{C} 1=\mathrm{mV}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 4 | CH1-CH2 cold junction compensation enable | $\begin{aligned} & 0=\text { disable, } \\ & 1=\text { enable } \end{aligned}$ | $\underset{8}{\text { UNSIGNED }}$ | RW | 1 |
|  | 5 | CH1-CH2 Line frequency rejection | $\begin{aligned} & \mathrm{O}=50 \mathrm{~Hz}, 1=60 \\ & \mathrm{~Hz} \end{aligned}$ | $\underset{8}{\text { UNSIGNED }}$ | RW | 0 |
|  | 6 | $\begin{aligned} & \text { CH1-CH2 } \\ & \text { Filter } \end{aligned}$ | $\begin{aligned} & \hline 0=\text { disable, } \\ & 1=\text { average, } \\ & 2=\text { hires }+ \text { average, } \\ & 3=\exp \\ & \text { lev } 1, \ldots 7=\exp \operatorname{lev} 5 \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 2 |


|  | 7 | CH1thermocouple type | $\begin{aligned} & \hline 0=J, 1=K, 2=R, \\ & 3=S, 4=T, 5=B, \\ & 6=E, 7=N \end{aligned}$ | $\begin{gathered} \hline \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8 | CH2- <br> thermocouple type | $\begin{aligned} & 0=J, 1=K, 2=R, \\ & 3=S, 4=T, 5=B, \\ & 6=E, 7=N \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
| $0 \times 2107$ | 0 | Channel 3-4 parameters | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RO | 8 |
|  | 1 | CH3 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 1 |
|  | 2 | CH 4 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 3 | $\mathrm{CH} 3-\mathrm{CH} 4$ Data type | $0={ }^{\circ} \mathrm{C} 1=\mathrm{mV}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 4 | $\begin{aligned} & \text { CH3-CH4 cold } \\ & \text { junction } \\ & \text { compensation } \\ & \text { enable } \end{aligned}$ | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 5 | CH3-CH4 Line frequency rejection | $\begin{aligned} & 0=50 \mathrm{~Hz}, 1=60 \\ & \mathrm{~Hz} \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 6 | $\mathrm{CH} 3-\mathrm{CH} 4$ <br> Filter | ```0=disable, 1=average, 2=hires+average, 3=exp lev1,...7=exp lev5``` | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 2 |
|  | 7 | CH3- <br> thermocouple type | $\begin{aligned} & 0=J, 1=K, 2=R, \\ & 3=S, 4=T, 5=B, \\ & 6=E, 7=N \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 8 | CH4- <br> thermocouple type | $\begin{aligned} & 0=J, 1=K, 2=R, \\ & 3=S, 4=T, 5=B, \\ & 6=E, 7=N \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
| $0 \times 2108$ | 0 | Channel 5-6 parameters | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 8 |
|  | 1 | CH5 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RW | 1 |
|  | 2 | CH6 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 3 | $\mathrm{CH} 5-\mathrm{CH} 6$ <br> Data type | $0={ }^{\circ} \mathrm{C} 1=\mathrm{mV}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 4 | CH5-CH6 cold junction compensation enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 5 | CH5-CH6 Line frequency rejection | $\begin{aligned} & 0=50 \mathrm{~Hz}, 1=60 \\ & \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$ | RW | 0 |
|  | 6 | $\mathrm{CH} 5-\mathrm{CH} 6$ <br> Filter | ```0=disable, 1=average, 2=hires+average, 3=exp lev1,...7=exp lev5``` | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 2 |
|  | 7 | CH5- <br> thermocouple type | $\begin{aligned} & 0=J, 1=K, 2=R, \\ & 3=S, 4=T, 5=B, \\ & 6=E, 7=N \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 8 | CH6- <br> thermocouple type | $\begin{aligned} & 0=J, 1=K, 2=R, \\ & 3=S, 4=T, 5=B, \\ & 6=E, 7=N \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |


| $0 \times 2109$ | 0 | Channel 7-8 parameters | Number of parameters | UNSIGNED 8 | RO | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | CH7 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 2 | CH8 enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |
|  | 3 | $\mathrm{CH} 7-\mathrm{CH} 8$ <br> Data type | $0={ }^{\circ} \mathrm{C} 1=\mathrm{mV}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 4 | CH7-CH8 cold junction compensation enable | $\begin{aligned} & 0=\text { disable } \\ & 1=\text { enable } \end{aligned}$ | $\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$ | RW | 1 |
|  | 5 | CH7-CH8 Line frequency rejection | $\begin{aligned} & 0=50 \mathrm{~Hz}, 1=60 \\ & \mathrm{~Hz} \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 6 | $\mathrm{CH} 7-\mathrm{CH} 8$ <br> Filter | $\begin{aligned} & 0=\text { disable, } \\ & 1=\text { average, } \\ & 2=\text { hires }+ \text { average }, \\ & 3=\exp \\ & \text { lev1, } . .7=\exp \text { lev } 5 \end{aligned}$ | $\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$ | RW | 2 |
|  | 7 | CH7- <br> thermocouple type | $\begin{aligned} & 0=J, 1=K, 2=R, \\ & 3=S, 4=T, 5=B, \\ & 6=E, 7=N \end{aligned}$ | $\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$ | RW | 0 |
|  | 8 | CH8- <br> thermocouple type | $\begin{aligned} & 0=J, 1=K, 2=R, \\ & 3=S, 4=T, 5=B, \\ & 6=E, 7=N \end{aligned}$ | $\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$ | RW | 0 |
| 0x2120 | 0 | Channel status | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$ | RO | 4 |
|  | 1 | $\begin{aligned} & \text { CH1-2 } \\ & \text { STATUS } \end{aligned}$ |  | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RO |  |
|  | 2 | CH3-4 <br> STATUS |  | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RO |  |
|  | 3 | $\begin{aligned} & \text { CH5-6 } \\ & \text { STATUS } \end{aligned}$ |  | $\begin{gathered} \hline \text { UNSIGNED } \\ 16 \\ \hline \end{gathered}$ | RO |  |
|  | 4 | $\mathrm{CH} 7-8$ <br> STATUS |  | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RO |  |
| $0 \times 2125$ | 0 | Fault actions | $\begin{aligned} & 1 \text { =last good } \\ & 0=\text { load object } 0 \times 2360 \\ & \text { Bit } 7 . .0 \text { not used } \end{aligned}$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0xFF00 |
| 0x2354 | 0 | Cold junction temperature | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | CH1-2 Cold junction value | [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO |  |
|  | 2 | CH3-4 Cold junction value | [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO |  |
|  | 3 | CH5-6 Cold junction value | [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO |  |
|  | 4 | CH7-8 Cold junction value | [ $\left.{ }^{\circ} \mathrm{C} / 10\right]$ | INTEGER 16 | RO |  |
| $0 \times 2360$ | 0 | Fault values | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 8 |
|  | 1 | CH1 Fault value | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 2000.0 |
|  | 2 | CH2 Fault value | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 2000.0 |
|  | 3 | CH3 Fault value | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 2000.0 |
|  | 4 | CH4 Fault value | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 2000.0 |
|  | 5 | CH5 Fault value | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 2000.0 |
|  | 6 | CH6 Fault value | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 2000.0 |
|  | 7 | CH7 Fault value | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 2000.0 |
|  | 8 | CH8 Fault value | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 2000.0 |


| STANDARD |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| $0 \times 6401$ | 0 | 16 bit input | Number of input float | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 8 |
|  | 1 | CH1 measure 16 bits | [ $\left.{ }^{\circ} \mathrm{C} / 10\right]$ or [mV/100] | $\begin{gathered} \hline \text { INTEGER } \\ 16 \\ \hline \end{gathered}$ | RO |  |
|  | 2 | CH2 measure 16 bits | [ $\left.{ }^{\circ} \mathrm{C} / 10\right]$ or [mV/100] | INTEGER 16 | RO |  |
|  | 3 | CH3 measure 16 bits | [ $\left.{ }^{\circ} \mathrm{C} / 10\right]$ or [mV/100] | INTEGER 16 | RO |  |
|  | 4 | CH 4 measure 16 bits | [ $\left.{ }^{\circ} \mathrm{C} / 10\right]$ or [mV/100] | INTEGER 16 | RO |  |
|  | 5 | CH5 measure 16 bits | [ $\left.{ }^{\circ} \mathrm{C} / 10\right]$ or [mV/100] | INTEGER 16 | RO |  |
|  | 6 | CH6 measure 16 bits | [ $\left.{ }^{\circ} \mathrm{C} / 10\right]$ or [mV/100] | INTEGER 16 | RO |  |
|  | 7 | CH7 measure 16 bits | [ $\left.{ }^{\circ} \mathrm{C} / 10\right]$ or [mV/100] | INTEGER 16 | RO |  |
|  | 8 | CH8 measure 16 bits | [ $\left.{ }^{\circ} \mathrm{C} / 10\right]$ or [mV/100] | INTEGER 16 | RO |  |
| 0x6403 | 0 | Float input | Number of input float | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 8 |
|  | 1 | CH1 measure real | [mV] or [ ${ }^{\circ} \mathrm{C}$ ] | REAL 32 | RO |  |
|  | 2 | CH2 measure real | [mV] or [ ${ }^{\text {C }}$ ] | REAL 32 | RO |  |
|  | 3 | CH3 measure real | [mV] or [ ${ }^{\circ} \mathrm{C}$ ] | REAL 32 | RO |  |
|  | 4 | CH4 measure real | [mV] or [ ${ }^{\text {C }}$ ] | REAL 32 | RO |  |
|  | 5 | CH5 measure real | [mV] or [ ${ }^{\circ} \mathrm{C}$ ] | REAL 32 | RO |  |
|  | 6 | CH6 measure real | [mV] or [ ${ }^{\text {C }}$ ] | REAL 32 | RO |  |
|  | 7 | CH7 measure real | [mV] or [ ${ }^{\text {C }}$ ] | REAL 32 | RO |  |
|  | 8 | CH8 measure real | [mV] or [ ${ }^{\text {C }}$ ] | REAL 32 | RO |  |
| $0 \times 6423$ | 0 | Analogue input interrupt global enable | 0=disable asynchronous <br> TxPDO <br> 1=enable <br> asynchronous <br> TxPDO | BOOLEAN | RW | 0 |
| $0 \times 6424$ | 0 | analogue interrupt upper limit 16bit |  | $\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$ | RO | 8 |
|  | 1 | Analogue interrupt upper limit CH1 - 16bit | [ $\left.{ }^{\circ} \mathrm{C} / 10\right]$ or [mV/100] | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
|  | 2 | Analogue interrupt upper limit CH2 - 16bit | [ $\left.{ }^{\circ} \mathrm{C} / 10\right]$ or [mV/100] | INTEGER 16 | RW | 0 |
|  | 3 | Analogue interrupt upper limit CH3-16bit | [ $\left.{ }^{\circ} \mathrm{C} / 10\right]$ or [mV/100] | INTEGER 16 | RW | 0 |



|  | 5 | Analogue interrupt delta limit CH5-16bit | [ $\left.{ }^{\circ} \mathrm{C} / 10\right]$ or [mV/100] | $\begin{gathered} \hline \hline \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 | Analogue interrupt delta limit CH6 - 16bit | [ $\left.{ }^{\circ} \mathrm{C} / 10\right]$ or [mV/100] | $\begin{gathered} \hline \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 7 | Analogue interrupt delta limit CH7 - 16bit | [ $\left.{ }^{\mathrm{C}} / 10\right]$ or [mV/100] | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
|  | 8 | Analogue interrupt delta limit CH8-16bit | [ $\left.{ }^{\mathrm{C}} / 10\right]$ or [mV/100] | UNSIGNED $16$ | RW | 0 |
| 0x6429 | 0 | Analogue interrupt upper limit float |  | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 8 |
|  | 1 | Analogue interrupt upper limit CH1 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 2 | Analogue interrupt upper limit CH2 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 3 | Analogue interrupt upper limit CH3 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 4 | Analogue interrupt upper limit CH 4 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 5 | Analogue interrupt upper limit CH5 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 6 | Analogue interrupt upper limit CH6 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 7 | Analogue interrupt upper limit CH7 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 8 | Analogue interrupt upper limit CH8 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
| 0x642A | 0 | Analogue interrupt lower limit float |  | REAL 32 | RO | 8 |
|  | 1 | Analogue interrupt lower limit CH1 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 2 | Analogue interrupt lower limit CH2 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 3 | Analogue interrupt lower limit CH3 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 4 | Analogue interrupt lower limit CH4 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 5 | Analogue interrupt lower limit CH5 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |


|  | 6 | Analogue interrupt lower limit CH6 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7 | Analogue interrupt lower limit CH7 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 8 | Analogue interrupt lower limit CH8 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
| 0x642B | 0 | Analogue interrupt delta limit float |  | UNSIGNED 8 | RO | 8 |
|  | 1 | Analogue interrupt delta limit CH1 float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 2 | Analogue interrupt delta limit CH2 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 3 | Analogue interrupt delta limit CH3 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 4 | Analogue interrupt delta limit CH4 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [ mV ] | REAL 32 | RW | 0 |
|  | 5 | Analogue interrupt delta limit CH5 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 6 | Analogue interrupt delta limit CH6 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 7 | Analogue interrupt delta limit CH7 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |
|  | 8 | Analogue interrupt delta limit CH8 - float | [ ${ }^{\circ} \mathrm{C}$ ] or [mV] | REAL 32 | RW | 0 |

## Seneca Z-PC Line module: ZC-SG

In this chapter are described the features of ZC-SG module, based on CANOpen protocol.
NOTE: "0x" means an exadecimal number interpretation.

## CANOpen features

| TECHNICAL DATA |  |
| :--- | :--- |
| Baud rate | $20,50,125,250,500,800,1000 \mathrm{kbps}$ |
| Typical refresh time | 20 ms |
| Sensibility supported | From $\pm 1 \mathrm{mV} / \mathrm{V}$ to $\pm 64 \mathrm{mV} / \mathrm{V}$ |
| CANOpen TECHNICAL DATA |  |
| NMT | Slave |
|  | Node guarding, heartbeat |
| Node ID | HW switch or software |
| Number of PDO | 2 TX |
| PDO modes | Event triggered, Sync (cyclic), Sync (acyclic) |
| PDO mapping | Variable |
| PDO linking | supported |
| Number of SDO | 1 server |
| Error message | yes |
| Supported application | Cia 301 v4.02 |
| Layer | Cia 401 v2.01 |

CANOpen TPDOs transmission type supported

| Object Value 0x180x Sub 2 | TRANSMISSION TYPE |
| :---: | :---: |
| 0 | Synchronous - acyclic |
| From 1 to 240 | Synchronous - cyclic |
| 255 | Asynchronous |

## CANOpen PDOs mapping

| OBJECTS FOR DEFAULT MAPPING |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PDO NR | COB-ID | MAPPED <br> OBJECTS | INDEX | SUBINDEX |  |
| TPDO2 | $0 \times 40000280$ <br> + <br> Nodeld | Measure float | $0 \times 6403$ | 1 |  |
|  | TPDO3 | ADC 16 bit | $0 \times 6401$ | 2 |  |
|  | 0x40000380 <br> + <br> Nodeld | Measure integer | $0 \times 6401$ | 1 |  |
|  |  | STATUS | $0 \times 2120$ | 0 |  |

Note that TPDO COB-ID must start with $0 \times 4$.

## CANOpen emergency message

The Emergency message is composed by:
2 bytes of EEC (Emergency error code)

1 bytes of ER (Error register)
Max of 4 bytes of MEF (Manufacturer error filled)

For EEC code 0xFF10, the emergency message is:

| EMERGENCY MESSAGE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 |  |  |  |
| $0 \times$ FF10 |  | 0x81 |  | MEF |  |  |

With this MEF:

| MEF (Manufacturer-specific Error Field) for EEC 0xFF10 |  |
| :---: | :---: |
| BIT | DESCRIPTION |
| $15 . .6$ | NA |
| 5 | Generic communication with input error |
| 4 | CRC communication with input error |
| 3 | EEPROM error |
| 2 | Over weight error |
| 1 | Weight float <0 |
| 0 | Stable weight |

For a "timeout command" or "error command", the emergency message is:

| EMERGENCY MESSAGE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 | BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 |  |
| $0 \times F F 11$ |  | $0 \times 81$ | Object 0x2103 |  |  |

For "CPU ERROR" the Emergency message will be:

| EMERGENCY MESSAGE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BYTE 0 | BYTE 1 | BYTE 2 | BYTE 3 |  |  |  |
| 0xFF20 |  | $0 \times 81$ |  | Object 0x1002 |  |  |


| EEC |  |
| :--- | :--- |
| CODE | No error |
| $0 \times 0000$ | Generic error |
| $0 \times 1000$ | CPU temperature over HOT STOP ERROR |
| $0 \times 4201$ | CPU temperature over HOT STOP |
| $0 \times 4202$ | CPU temperature under COLD ERROR |
| $0 \times 4203$ | Communication Can Overrun |
| $0 \times 8110$ | Error passive |
| $0 \times 8120$ | Life Guard error |
| $0 \times 8130$ | Recovered from bus off |
| $0 \times 8140$ | General input channels error |
| $0 \times F F 10$ | Command for input channel error |
| $0 \times F F 11$ | CPU error |
| $0 \times F F 20$ |  |


| ER |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 |
| Generic | 0 | Voltage | temperature | communication | 0 | 0 | Manufacture |

Where bit equal to " 0 " means "no error".

Object 0x1002: manufacturer status register

Object $0 \times 1002$ is the CPU status.

| OBJECT 1002 |  |
| :---: | :---: |
| BIT | DESCRIPTION |
| $31 . .3$ | NA |
| 2 | Communication with input error |
| 1 | NA |
| 0 | EEPROM CRC error |

## Object 0x1006: communication window lenght

| OBJECT 1006 |  |  |
| :---: | :---: | :---: |
| MIN VAL [ms] | MAX VAL [ms] |  |
| 10 | 10000 |  |

Object 0x1007: synchronous window lenght

| OBJECT 1007 |  |
| :---: | :---: |
| MIN VAL [ms] | MAX VAL [ms] |
| 2 | 2000 |

## CANOpen manufacturer specific profile

If dip-switches are in "from memory" mode, the node address is selectable by Object 0x2001.

| NODE ADDRESS (Object 0x2001) |  |
| :---: | :--- |
| Object value | Description |
| $0 . .127$ | Node address |

If dip-switches are in "from memory" mode, the baud rate is selectable by Object 0x2002.

| BAUDRATE (Object 0x2002) |  |
| :---: | :--- |
| Object value | Description |
| 1 | $20 \mathrm{kbit} / \mathrm{s}$ |
| 2 | $50 \mathrm{kbit} / \mathrm{s}$ |
| 3 | $125 \mathrm{kbit} / \mathrm{s}$ |
| 4 | $250 \mathrm{kbit} / \mathrm{s}$ |
| 5 | $500 \mathrm{kbit} / \mathrm{s}$ |
| 6 | $800 \mathrm{kbit} / \mathrm{s}$ |
| 7 | $1 \mathrm{Mbit} / \mathrm{s}$ |

Object $0 \times 2030$ can be used to monitor the CPU temperature.

| CPU TEMPERATURE (Object 0x2030) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Actual temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$ |
| 2 | Temperature for HOT STOP ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 95.0^{\circ} \mathrm{C}$ |
| 3 | Temperature for HOT ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 90.0^{\circ} \mathrm{C}$ |
| 4 | Temperature for COLD ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right]-25.0^{\circ} \mathrm{C}$ |

The HOT STOP temperature sends in pre-operational the station.
The HOT ERROR and the COLD ERROR temperature sends the Emergency Object.
The Object is Read Only.

## Digital out logic

Digital out logic=0 the digital output it is normally opened.
Digital out logic=1 the digital output it is normally closed.

## Object 0x2104: Execute

The object sends command to the CPU: the supported commands are:

| Object 0x2104 |  |
| :---: | :---: |
| COMMAND CODE | DESCRIPTION |
| 0xC2FA | Tare acquisition ready to be saved in EEPROM <br> (allowed also in RUN) |
| 0xC60C | Full scale/known weight acquisition ready to be <br> saved in EEPROM (allowed also in RUN) |
| 0xC1BA | Tare acquisition (on RAM) (allowed also in RUN) |
| 0xD180 | Full scale acquisition (on RAM) (allowed also in |
| RUN) |  |

## Object Ox2105: Execute result

The object is used to know the command execution result (only for special commands).

## Object 0x2107: Configuration register 1

The object is used to setup the measure and the digital input/output.

| CONFIGURATION REGISTER 1 (Object 0x2107) |  |
| :---: | :--- |
| SUBINDEX | Description |
| 1 | Sample number |
| 2 | Mode |
| 3 | Cell sensibility |
| 4 | Digital out logic |
| 5 | Digital out mode |
| 6 | Digital IN or OUT selection |

## Sample NR

The sample number it is the number of sample that enters into the measure. Higher values implies lower response speed but more stability.

## Mode

The station can be configured in two modes:
Mode=1: a known weight must be used to calibrate the system on site.
Mode=0: no need to use a known weight to calibrate the system, the station will use the factory calibration values.

## Cell sensibility

The object sets the cell $\mathrm{mV} / \mathrm{V}$ sensibility:
$0= \pm 1 \mathrm{mV} / \mathrm{V}$
$1= \pm 2 \mathrm{mV} / \mathrm{V}$
$2= \pm 4 \mathrm{mV} / \mathrm{V}$
$3= \pm 8 \mathrm{mV} / \mathrm{V}$
$4= \pm 16 \mathrm{mV} / \mathrm{V}$
$5= \pm 32 \mathrm{mV} / \mathrm{V}$
$6= \pm 64 \mathrm{mV} / \mathrm{V}$
7 =from object $0 \times 2108$ sub1

## Digital out logic

Defines the operation that will cause the switch to ON or OFF for the digital output.

| DIGITAL OUT LOGIC |  |
| :---: | :--- |
| Value | Description |
| 0 | The output is normally opened |
| 1 | The output is normally closed |

## Digital out mode

Defines the operation that will cause the switch to ON or OFF for the digital output.

| DIGITAL OUT MODE |  |
| :---: | :--- |
| Value | Description |
| 0 | The gross weight exceeds the full scale |
| 1 | The weight is stable and the net weight exceeds the <br> threshold set |
| 2 | The weight it is stable |

## Digital in or out selection

The station can be configured with a digital input or a digital output:

- if IN or OUT selection=1: digital output enable/digital input disabled
- if IN or OUT selection=0: digital input enable/digital output disabled


## Object 0x2108: configuration register 2

The object is used to setup the system measure.

| CONFIGURATION REGISTER 2 |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Sense ratio |
| 2 | Cell full scale |
| 3 | Known weight value |
| 4 | Not used |
| 5 | Not used |
| 6 | Threshold value |
| 7 | Delta weight |
| 8 | Delta time |
| 9 | ADC speed |
| 10 | Resolution in number of points |

## Sense ratio

Sets the sense ratio for the strain gauge used in [mV/V] (floating point 32 bit format).

## Cell full scale

If mode 1 is selected (object $0 \times 2107$ ) sets the full scale of the strain gauge in technical units of weight (kg, pounds,etc...) (Floating point 32 bit format).

## Known weight value

If mode 1 is selected (object $0 \times 2107$ ) sets the value of the weight used for the calibration in technical units (kg, pounds, etc) (Floating point 32 bit format).

## Value for Maximum integer

Sets for what net weight (object $0 \times 6403$ ) the integer net value (object $0 \times 6401$ subindex 1) rise the +30000 value. (floating point 32 bit format).

## Value for Minimum integer

Sets for what net weight (object $0 \times 6403$ ) the integer net value (object $0 \times 6401$ subindex 1 ) rise the zero value. (floating point 32 bit format).

## Threshold value

If the net weight exceeds the threshold value set and the weight is stable, the digital output (if subindex digital out mode=1) is closed or opened (depending subindex digital output logic) (floating point 32 bit format).

## Delta weight

Weight variation in technical units accepted for the condition of "stable weight" (floating point 32 bit format)

## Delta time

Time in units of 100 ms used with delta weight to establish whether or not the weight is stable [s/10].

## ADC speed

The ADC speed and the frequency rejection can be customized by the table:

| ADC CONFIGURATION |  |  |  |
| :---: | :---: | :---: | :---: |
| Value | Sampling frequency [Hz] | $\mathbf{5 0} \mathbf{~ H z ~ r e j e c t i o n ~}$ | $\mathbf{6 0} \mathbf{~ H z ~ r e j e c t i o n ~}$ |
| 27 | 151.71 | NO | NO |
| 55 | 74.46 | NO | NO |
| 82 | 49.95 | YES | YES |
| 109 | 37.59 | NO | YES |
| 155 | 50.57 | NO | NO |
| 183 | 24.82 | YES | NO |
| 210 | 16.65 | YES | YES |
| 237 | 12.53 | NO | YES |

## Hysteresis

The hysteresis can be used to stabilize the input value. If the hysteresis is activated the resolution is limited to $\pm 30000$ points. If hysteresis is disabled, the resolution available is the full 24 bit ADC.

0x00=hysteresis disabled
$0 \times 80=$ hysteresis enabled

## Object 0x2120: status

The status object contains important information about the state of the measure and the station.

| STATUS |  |
| :---: | :--- |
| Bit | Description |
| $15 . .7$ | NA |
| 6 | Net weight > threshold |
| 5 | Generic communication with input channel error |
| 4 | CRC communication with input channel error |
| 3 | EEPROM error |
| 2 | Over weight error |
| 1 | Negative measure |
| 0 | Stable weight condition |

## DIP-SWITCH configuration

| BAUD-RATE (Dip-Switches: SW1) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | Meaning |  |  |  |  |
|  |  |  | Only Baud-Rate is acquired from memory(EEPROM) |  |  |  |  |
|  |  | $\bullet$ | 20 kbps |  |  |  |  |
|  | $\bullet$ |  | 50 kbps |  |  |  |  |
|  | $\bullet$ | $\bullet$ | 125 kbps |  |  |  |  |
| $\bullet$ |  |  | 250 kbps |  |  |  |  |
| $\bullet$ |  | $\bullet$ | 500 kbps |  |  |  |  |
| $\bullet$ | $\bullet$ |  | 800 kbps |  |  |  |  |
| $\bullet$ | $\bullet$ | $\bullet$ | 1 Mbps |  |  |  |  |
| ADDRESS (Dip-Switches: SW1) |  |  |  |  |  |  |  |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 | Meaning |
|  |  |  |  |  |  |  | Only address is acquired from memory(EEPROM) |
|  |  |  |  |  |  | - | Address=1 |
|  |  |  |  |  | $\bullet$ |  | Address=2 |
|  |  |  |  |  | $\bullet$ | - | Address=3 |
|  |  |  |  | $\bullet$ |  |  | Address=4 |
|  |  |  |  | $\bullet$ |  | $\bullet$ | Address=5 |
| X | X | X | X | X | X | X | ............................... |
| $\bullet$ | Address=127 |

## CANOpen LED description

| SERVICE (DIAGNOSTIC) LED DESCRIPTION |  |  |
| :--- | :--- | :--- |
| LED | LED status | Meaning |
| RUN | Blinking light | Pre-operational mode |
|  | Single flash | Stop mode |
|  | ON | Operational mode |
| ERROR | Single flash | At least one error counter has reached or exceed the warning <br> level |
|  | Double flash | Guard event |
|  | Triple flash | The SYNC has not received within the configurated <br> communication cycle timeout period |
|  | ON | The CAN controller is bus off |
|  | OFF | No error |
| FAIL | Blinking | Data receiving from RS232/overweight error |
|  | ON | Communication error with input channel |
| POWER | ON | Power supply |

## Object for analog data

Object 0x6401 contains the 16 bit (signed) values for the weight and the unsigned 16 bit ADC value.

| 16 BIT INTEGER INPUT (Object 0x6401) |  |
| :---: | :--- |
| Subindex | Description |
| 1 | Net value signed |
| 2 | ADC value |

## Integer net value

Integer net value (signed): integer approximation of the floating point value.

## ADC value

The ADC value scaled into 16 bit (unsigned) value.
Where if $A D C=0 \times 8000$ means 0 mV on input.
If $A D C=0 x F F F F$ means max positive $m V$ on input.
If $A D C=0$ means max negative $m V$ on input.

## Object 0x6403 32 bit float input value

Object 0x6403 contains the net weight in technical unit in agreement with the known weight object (floating point 32 bit format).

## Cell calibration procedure for mode=1 (calibration with a known weight)

1) Set the right $\mathrm{mV} / \mathrm{V}$ sensibility on object $0 \times 2107$ subindex 3
2) Save the new value by sending the command $0 \times B A B 0$ on object $0 \times 2104$ subindex 0
3) Send the Reset command by sending command 0xABAC on object $0 \times 2104$ subindex 0
4) Put the Tare on the cell
5) Get the Tare value by sending the command $0 x C 2 F A$ on object $0 x 2104$ subindex 0
6) Enter the known weight value in technical units (kg, pounds, etc) on object $0 \times 2108$ subindex 3
7) Put the known weight value on the cell
8) Get the known weight by sending the command $0 \times C 60 C$ on object $0 \times 2104$ subindex 0
9) Save the new values by sending the command $0 x B A B 0$ on object $0 \times 2104$ subindex 0
10) Wait 5 seconds and Switch OFF and then ON the ZC-SG

## Cell calibration procedure for mode=0 (calibration without a known weight)

1) Set the value 7 on object $0 x 2107$ subindex 3 (use object 2108 for sense ratio)
2) Set the right $\mathrm{mV} / \mathrm{V}$ sensibility on object $0 \times 2108$ subindex1 in floating point value
3) Save the new values by sending the command $0 \times B A B 0$ on object $0 \times 2104$ subindex 0
4) Send the Reset command by sending command 0xABAC on object $0 \times 2104$ subindex 0
5) Put the Tare on the cell
6) Get the Tare value by sending the command $0 x C 2 F A$ on object $0 x 2104$ subindex 0
7) Save the new values by sending the command $0 \times B A B 0$ on object $0 \times 2104$ subindex 0
8) Wait 5 seconds and Switch OFF and then ON the ZC-SG

## CANOpen functional diagram

For integer values


## CANOpen Object dictionary

| COMMUNICATION PROFILEAREA |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| 0x1000 | 0 | Device type | Profile 401=0×191 | UNSIGNED 32 | RO | 0x00040191 |
| 0x1001 | 0 | Error register | Error register (DS401) | UNSIGNED 8 | RO | 0 |
| 0x1002 | 0 | Station status | Status register | UNSIGNED 32 | RO | 0 |
| 0x1005 | 0 | SYNC COB-ID | The device consumes the SYNC message | UNSIGNED 32 | RW | 0x00000080 |
| 0x1006 | 0 | Comm. window lenght | Sync interval [us] | UNSIGNED 32 | RW | 0 |
| 0x1007 | 0 | Synchronous window lenght | The window [us] for the PDO transmission after the SYNC | UNSIGNED 32 | RW | 0 |
| 0x1008 | 0 | Manufacturer Device name | Device name | VISIBLE STRING | RO | "ZC-SG" |
| 0x1009 | 0 | Manufacturer HW version | Hardware version | VISIBLE STRING | RO | "SC000000" |
| 0x100A | 0 | Manufacturer SW version | Software version | VISIBLE STRING | RO | "SW001160" |
| 0x100C | 0 | Guard Time | [ms] | UNSIGNED 16 | RW | 0 |
| 0x100D | 0 | Life time factor | Max delay between two guarding telegrams= Guard Time Life_Time_Factor | UNSIGNED 8 | RW | 0 |
| 0x1010 | 0 | Store parameters/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 5 |
|  | 1 | Save all parameters | Store not volatile parameters (write in ASCII "save" for store process MSB $0 \times 65766173$ LSB) | UNSIGNED 32 | RW | 1 |
|  | 2 | Save communication parameters | Store not volatile parameters (write in ASCII "save" for store process MSB $0 \times 65766173$ LSB) | UNSIGNED 32 | RW | 1 |
|  | 3 | Save application parameters | Store not volatile parameters (write in ASCII "save" for store process MSB $0 \times 65766173$ LSB) | UNSIGNED 32 | RW | 1 |
|  | 4 | Save manufacturer parameters | Store not volatile parameters (write in ASCII "save" for store process MSB $0 \times 65766173$ LSB) | UNSIGNED 32 | RW | 1 |


|  | 5 | Save channel parameters | Store not volatile parameters (write in ASCII "save" for store process MSB 0x65766173 LSB) | UNSIGNED 32 | RW | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x1011 | 0 | Restore default/ number of mapped object | Max subindex number | UNSIGNED 8 | RO | 5 |
|  | 1 | Restore all parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
|  | 2 | Restore communication parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
|  | 3 | Restore application parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
|  | 4 | Save Manufacturer parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
|  | 5 | Restore slave parameters | Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB) | UNSIGNED 32 | RW | 0 |
| 0x1014 | 0 | $\begin{aligned} & \hline \text { COB-ID } \\ & \text { emergency } \\ & \text { Object } \end{aligned}$ |  | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 80 \end{gathered}$ |
| $0 \times 1017$ | 0 | Heartbeat producer time | Time (ms) $0 \times 0000=$ there is not heartbeat service | UNSIGNED 16 | RW | 0 |
| 0x1018 | 0 | Identity object | Max subindex number | UNSIGNED 8 | RO | 4 |
|  | 1 | Vendor ID | Seneca srl | UNSIGNED 32 | RO | 0x00000249 |
|  | 2 | Product code | ZC-SG Machine ID Code | UNSIGNED 32 | RO | 0x0000001F |
|  | 3 | Revision number |  | UNSIGNED 32 | RO |  |
|  | 4 | Serial number |  | UNSIGNED 32 | RO |  |
| 0x1200 | 0 | $\begin{aligned} & 1^{\text {st }} \text { SDO port/ } \\ & \text { number of } \\ & \text { mapped object } \end{aligned}$ | Max subindex number | UNSIGNED 8 | RO | 2 |
|  | 1 | $\begin{aligned} & \text { COB-ID SDO } \\ & \text { Client-> Server } \end{aligned}$ | COB-ID of receive SDO | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 600 \end{gathered}$ |
|  | 2 | $\begin{aligned} & \text { COB-ID SDO } \\ & \text { Server-> Client } \end{aligned}$ | COB-ID of transmit SDO | UNSIGNED 32 | RO | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 580 \end{gathered}$ |
| 0x1801 | 0 | $\begin{aligned} & 2^{\text {nd }} \text { transmit } \\ & \text { PDO } \\ & \text { parameters } \end{aligned}$ | Number of mapped objects | UNSIGNED 8 | RO | 3 |
|  | 1 | $\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$ | COB-ID of TxPDO2 | UNSIGNED 32 | RW | $\begin{gathered} \text { \$NODEID+ } \\ 0 \times 40000280 \end{gathered}$ |


|  | 2 | Transmission type | Transmission type for TxPDO2 $0 \times 00=$ synchronous acyclic $0 \times 01$ to 0xF0=synchronous cyclic $0 \times F E=$ asynchronous manufacturer specific | UNSIGNED 8 | RW | 0xFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | Inhibit time | Min delay for the next PDO ( $\mathrm{ms} / 10$ ) | UNSIGNED 16 | RW | $0 \times 00$ |
| 0x1802 | 0 | $3^{\text {ra }}$ transmit PDO parameters | Max subindex number | UNSIGNED 8 | RO | 3 |
|  | 1 | COB-ID used by PDO | COB-ID of TxPDO3 | UNSIGNED 32 | RW | $\begin{aligned} & \text { \$NODEID+ } \\ & 0 \times 40000380 \end{aligned}$ |
|  | 2 | Transmission type | Transmission type for TxPDO3 $0 \times 00=$ synchronous acyclic $0 \times 01$ to $0 \times F 0=$ synchronous cyclic 0xFE=asynchronous manufacturer specific | UNSIGNED 8 | RW | 0xFF |
|  | 3 | Inhibit time | Min delay for the next PDO ( $\mathrm{ms} / 10$ ) | UNSIGNED 16 | RW | $0 \times 0000$ |
| 0x1A01 | 0 | $2^{\text {nd }}$ transmit PDO mapping parameter | Number of mapped objects | UNSIGNED 8 | RW | 2 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: weight float) | UNSIGNED 32 | RW | 0x64030120 <br> Object $=0 \times 6403$ <br> Subindex=1 <br> Length $=32$ bit |
|  | 2 | $2^{\text {nd }}$ object to be mapped | Second object (default: ADC 16 bit value) | UNSIGNED 32 | RW | $\begin{gathered} 0 \times 64010210 \\ \text { Object }=0 \times 6401 \\ \text { Subindex=2 } \\ \text { Length }=16 \text { bit } \end{gathered}$ |
| 0x1A02 | 0 | $3^{\text {ra }}$ transmit PDO mapping parameter | Number of mapped objects | UNSIGNED 8 | RO | 2 |
|  | 1 | $1^{\text {st }}$ object to be mapped | First object (default: weight integer) | UNSIGNED 32 | RW | $\begin{gathered} \hline 0 \times 64010110 \\ \text { Object }=0 \times 6401 \\ \text { Subindex=1 } \\ \text { Length }=16 \text { bit } \\ \hline \end{gathered}$ |
|  | 2 | $2^{\text {nd }}$ object to be mapped | Second object (default: status) | UNSIGNED 32 | RW | $\begin{gathered} 0 \times 21200010 \\ \text { Object=0x2120 } \\ \text { Subindex=0 } \\ \text { Length=16bit } \end{gathered}$ |
|  |  |  |  |  |  |  |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| 0x2001 | 0 | Module address | Station address (only if dip switch $4,5,6,7,8,9,10$ are OFF) | $\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$ | RW | $0 \times 7 \mathrm{~F}=127$ |


| 0x2002 | 0 | Baudrate | Station Baudrate (only if dip switch 1,2,3 are OFF) <br> $1=20 \mathrm{kbps}$ <br> 2=50kbps <br> $3=125 \mathrm{kbps}$ <br> 4=250kbps <br> $5=500 \mathrm{kbps}$ <br> $6=800 \mathrm{kbps}$ <br> $7=1 \mathrm{Mbps}$ | $\begin{gathered} \hline \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 01$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x2003 | 0 | Firmware release |  | $\begin{gathered} \hline \text { UNSIGNED } \\ 16 \end{gathered}$ | RO | 1122 |
| 0x2030 | 0 | Device temperature/ number of parameters | Max subindex number | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 4 |
|  | 1 | Internal temperature | Station internal temperature [ ${ }^{\circ} \mathrm{C} / 10$ ] | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RO | 0 |
|  | 2 | Hi Hi temperature | $\begin{aligned} & \text { Critical hot } \\ & \text { temperature (all } \\ & \text { operations stop) } \\ & {\left[{ }^{\circ} \mathrm{C} / 10\right]} \end{aligned}$ | INTEGER 16 | RO | 950 |
|  | 3 | Hi temperature | Warning for too hot temperature [ ${ }^{\circ} \mathrm{C} / 10$ ] | INTEGER 16 | RO | 900 |
|  | 4 | Low temperature | $\begin{aligned} & \text { Critical low } \\ & \text { temperature (all } \\ & \text { operations stop) } \\ & {\left[{ }^{\circ} \mathrm{C} / 10\right]} \end{aligned}$ | INTEGER 16 | RO | -250 |
| $0 \times 2104$ | 0 | Execute | Supported commands: <br> 0xC2FA=tare acquisition (ready for EEPROM saving) $0 \times C 60 \mathrm{C}=$ full scale acquisition (ready for EEPROM saving) $0 \times C 1 B A=$ tare acquisition (RAM) 0xD180=full scale acquisition (RAM) $0 x B A B 0=$ save values in EEPROM | $\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
| $0 \times 2105$ |  | Execute result | $\begin{aligned} & 0=\text { command done } \\ & 1=\text { command } \\ & \text { executed with error } \end{aligned}$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 0 |
| $0 \times 2107$ | 0 | SETUP 1 channel | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 6 |
|  | 1 | SET1: sample number | $\begin{aligned} & \text { Number of } \\ & \text { samples for filter } \\ & \text { calculation } \\ & {[1 . .100]} \end{aligned}$ | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 100 |
|  | 2 | SET1: mode | $0=$ use the factory calibration 1=use a known weight | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 1 |


|  | 3 | SET1: cell sensibility | $\begin{aligned} & \hline \hline 0= \pm 1 \mathrm{mV} / \mathrm{V} \\ & 1= \pm 2 \mathrm{mV} / \mathrm{V} \\ & 2= \pm 4 \mathrm{mV} / \mathrm{V} \\ & 3= \pm 8 \mathrm{mV} / \mathrm{V} \\ & 4= \pm 16 \mathrm{mV} / \mathrm{V} \\ & 5= \pm 32 \mathrm{mV} / \mathrm{V} \\ & 6= \pm 64 \mathrm{mV} / \mathrm{V} \\ & 7=\text { from object } \\ & 0 \times 2108 \text { sub1 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \hline \text { UNSIGNED } \\ & 8 \end{aligned}$ | RW | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | SET1: digital out logic | $0=$ the output is normally open $1=$ the output is normally closed | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
|  | 5 | SET1: digital out operation mode | $0=$ the output is switched when the gross_weight > full_scale 1=the output in switched when the weight is stable and the net weight > threshold 2=the output is switched when the weight is stable | $\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$ | RW | 0 |
|  | 6 | SET1: digital in or out mode | $0=$ digital input mode 1=digital output mode | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | 0 |
| 0x2108 | 0 | SETUP Channel | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 10 |
|  | 1 | SET2: sense ratio | Cell sense ratio in $\mathrm{mV} / \mathrm{V}$ measure | REAL 32 | RW | 2.0 |
|  | 2 | SET2: cell full scale |  | REAL 32 | RW | 10000.0 |
|  | 3 | SET2: known weight | Known weight [kg, g , etc...] | REAL 32 | RW | 10000.0 |
|  | 4 | SET2: not used |  | REAL 32 | RO | 10000.0 |
|  | 5 | SET2: not used |  | REAL 32 | RO | 0.0 |
|  | 6 | SET2: threshold |  | REAL 32 | RW | 5000.0 |
|  | 7 | SET2: Delta weight | Weight variation for the stable condition | REAL 32 | RW | 1.0 |
|  | 8 | SET2: Delta time | The variation used for the stable condition Delta time $\cdot 100 \mathrm{~ms}$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 16 \end{gathered}$ | RW | 1 |
|  | 9 | $\begin{aligned} & \text { SET2: ADC } \\ & \text { speed } \end{aligned}$ | $\begin{aligned} & \hline 27=151.71 \mathrm{~Hz} \\ & 55=74.46 \mathrm{~Hz} \\ & 82=49.95 \mathrm{~Hz} \\ & 109=37.59 \mathrm{~Hz} \\ & 155=50.57 \mathrm{~Hz} \\ & 183=24.82 \mathrm{~Hz} \\ & 210=16.65 \mathrm{~Hz} \\ & 237=12.53 \mathrm{~Hz} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { UNSIGNED } \\ & 8 \end{aligned}$ | RW | 82 |
|  | 10 | $\begin{aligned} & \text { SET2: } 30000 \\ & \text { points } \\ & \text { hysteresis } \end{aligned}$ | $\begin{aligned} & \hline 0 \times 00=\text { full } \\ & \text { resolution } \\ & 0 \times 80=30000 \text { points } \\ & \text { resolution } \end{aligned}$ | $\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$ | RW | $0 \times 80$ |


| 0x2120 | 0 | Channel status | Status object | $\begin{gathered} \hline \hline \text { UNSIGNED } \\ 16 \\ \hline \end{gathered}$ | RO |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 \times 2125$ | 0 | Fault action |  | UNSIGNED 16 | RW | 0x8000 |
| $0 \times 2160$ | 0 | Fault value | Number of parameters | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | $0 \times 01$ |
|  | 1 | Fault value |  | REAL 32 | RW | 850.0 |
|  |  |  |  |  |  |  |
| INDEX | $\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$ | NAME | DESCRIPTION | TYPE | ACCESS | DEFAULT |
| $0 \times 6401$ | 0 | 16 bit input | Number of input | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 2 |
|  | 1 | Weight integer | Weight in integer format | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RO |  |
|  | 2 | ADC value (scaled to 16 bit) | ADC scaled value | $\begin{gathered} \text { UNSIGNED } \\ 16 \\ \hline \end{gathered}$ | RO |  |
| 0x6403 | 0 | Float input | Number of input | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 1 |
|  | 1 | Weight real | Weight in real format | REAL 32 | RO |  |
| $0 \times 6423$ | 0 | Global interrupt enable | $0=$ disable asynchronous TxPDO <br> 1=enable asynchronous TxPDO | BOOLEAN | RW | 0 |
| 0x6424 | 0 | Analogue interrupt upper limit 16 bit | Number upper value 16 bit | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 1 |
|  | 1 | Analogue interrupt upper limit 16 bit |  | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
| $0 \times 6425$ | 0 | Analogue interrupt lower limit 16 bit | Number lower value 16 bit | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 1 |
|  | 1 | Analogue interrupt lower limit 16 bit |  | $\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
| 0x6426 | 0 | Analogue interrupt delta limit 16 bit | Number delta limit value 16 bit | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 1 |
|  | 1 | Analogue interrupt delta limit 16 bit |  | $\begin{gathered} \hline \text { INTEGER } \\ 16 \end{gathered}$ | RW | 0 |
| 0x6429 | 0 | Analogue interrupt upper limit float | Number upper value float | $\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$ | RO | 1 |
|  | 1 | Analogue interrupt upper limit float |  | REAL 32 | RW | 0 |


| $0 \times 642 \mathrm{~A}$ | 0 | Analogue <br> interrupt <br> lower limit <br> float | Number lower value <br> float | UNSIGNED <br> 8 | RO | 1 |
| :--- | :---: | :--- | :--- | :--- | :---: | :---: |
|  | 1 | Analogue <br> interrupt <br> lower limit <br> float | REAL 32 | RW | 0 |  |
| $0 \times 642 \mathrm{~B}$ | 0 | Analogue <br> interrupt delta <br> limit float | Number delta limit <br> value float | UNSIGNED <br> 8 | RO | 1 |
|  | 1 | Analogue <br> interrupt delta <br> limit float |  | REAL 32 | RW | 0 |


[^0]:    D -8 In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

[^1]:    With reference to the output1 (and, in the same way, to the output2 and output3), the electrical value "OUT1-mV 0" ("OUT1- HA 0 ") is NOT the Electrical Start Scale (E.S.S.), if output is voltage (current)-type. The Electrical Start Scale is the electrical value corresponding to the normalized value $=-10000$ (unchangeable).

[^2]:    10-9
    Screw terminal 7 is open.

[^3]:    $0-9$
    Use shielded cables for connections.

[^4]:    D -3 " V " means equivalent voltage generator

